

SYLLABUS

2022 / 2023

Programme

Semestre 5

	Nature	CM	TD	TP	Crédits
Mécanique	Module	26h	28h		4
Physique	Module	34h	20h		4
Informatique	Module	14h	20h	20h	4
Economie-Gestion	Module	24h	24h	6h	4
Activités Physiques Sportives et Artistiques 5	Module		15h		1
Langues et Cultures Internationales 5	Module		40h		2
Train'ing ou Compétences en alternance 72	Module		24h	56h	6
Projet innovation 72	Module				5

Semestre 6

	Nature	СМ	TD	TP	Crédits
Chimie - Génie des Procédés	Module	36h	32h	4h	5
Mathématiques	Module	36h	36h		5
Ondes et Signal	Module	34h	24h	12h	5
Langues et Cultures Internationales 6	Module	40h			2
Activités Physiques Sportives et Artistiques 6	Module		15h		1
Train'ing ou Compétences en alternance 96	Module				5
Projet innovation 96	Module				4
Stage 1A ou Compétences en entreprise	Module				3

Semestre 7

Nature	СМ	TD	TP	Crédits
Module				
EC	54h			4
EC	24h	22h	8h	4
EC	36h	18h	2h	4
	Module EC EC	Module EC 54h EC 24h	Module EC 54h EC 24h 22h	Module EC 54h EC 24h 22h 8h

Electronique Energie Electrique Automatique	UE	24h	30h		4
Sciences Humaines et Sociales	UE	14h	10h	6h	3
Langues et Cultures Internationales 7	UE		40h		2
Activités Physiques Sportives et Artistiques 7	UE				1
Projet thématique	UE				4
Train'ing ou Compétences en alternance 7	Module		24h	56h	7
Electifs	Bloc				
Menu 1	UE				
Analyse Mathématique	UE				
Biochimie	UE				
Développement web	Module	30h			
Droit et sociologie des organisations	UE	18h	10h		
Macroéconomie et politique économique	UE	16h	8h		1
Matériaux	UE	16h	6h	8h	
Mécanique appliquée - Structures, aérodynamique et mécanique du vol	UE	14h	8h	8h	
Projets expérimentaux et/ou numériques dans le domaine de la photonique	UE			30h	
Quête de la cohérence quantique et seconde révolution quantique	UE				5
Télécommunications	UE	24h	6h		
Transfert thermique	UE				
Menu 2	UE				
Analyse et traitement des signaux biomédicaux	UE	24h	6h		
Asservissement numérique	UE	12h	6h	12h	
Culture Générale	UE	20h	10h		
Énergie & Environnement	UE	16h	12h		
Energie Electrique pour le Développement Durable	UE	22h	4h	4h	
Enjeux de la chimie moderne	UE	6h	12h	12h	
Informatique Théorique	Module	20h	4h		
Interaction Matière Rayonnement	UE	22h	4h	4h	
Introduction aux processus stochastiques	UE	14h	10h	6h	
Optique pour le biomédical	UE	16h	8h		
Thermomécanique des milieux continus	UE	16h	12h	2h	
Menu 3	UE				
Capteurs, principes et mise en oeuvre	UE	10h	4h	16h	
Dynamique des milieux continus	UE	12h	8h	10h	
Finance : introduction aux modélisations économiques et mathématiques	UE	16h	6h		1
Intelligence Artificielle et Jeux	Module	14h	16h		
Matériaux Semi-Conducteurs, propriétés et Applications	UE	24h	6h		
Microcontroleurs et leur environnement	UE	14h	8h	8h	
Philosophie économique et anthropocène	UE	6h	10h	1h	
Programmation Objet	Module	4h	8h	18h	
RIS (Rechercher, Identifier, Séparer)	UE	2h		28h	
Télédétection et applications	UE	14h		16h	
Opérations de la chaine du solide	UE				

Semestre 8

	Nature	CM	TD	TP	Crédits
Langues et Cultures Internationales 8	Module		40h		3
Train'ing S8	Module				1
Stage de fin de 2ème année	Module				5

Parcours	Module				
Bio-ingénierie (BIO)	Module				
Les briques du vivant	Module	70h		4h	6
Imagerie et Théraphies par Ondes	Module	53h		17h	5
Biotechnologies et Thérapies Chimiques	Module	58h		10h	5
Planète BIO	Module	28h			5
Dynamique - Mutations - Crises (DMC)	Bloc				
Modélisation mathématique et statistique des systèmes complexes	Module	25h	18h	21h	5
Gestion des crises : applications physiques et chimiques	Module	23h	18h	4h	4
Optimisation et application au contrôle	Module	14h	10h	14h	3
Instabilités dynamiques et transport chaotique	Module	10h	6h	22h	3
Modélisation économique : croissance et développement durable	Module	36h	4h		3
Au-delà du modèle	Module	15h	5h	10h	3
Environnement : management et technologies (ENV)	Module				
Management environnemental	Module	32h	6h		3
Economie circulaire	Module	25h	12h	12h	4
Chimie durable	Module	28h	6h	8h	4
Effluents et pollutions	Module	26h	14h	4h	4
Surveillance de la qualité environnementale	Module	36h	8h	16h	4
Projet	Module				2
Energie durable (ENE)	Module				
Introduction aux enjeux énergétiques et aspects transverses et sociétaux	Module	34h			3
Energie solaire	Module	28h	8h		3
Energies marine éolienne et hydraulique	Module	50h			4
Energie nucléaire	Module	30h	10h	20h	4
D'autres énergies pour demain ? Les exemples de la biomasse et de l'hydrogène	Module	18h	12h		2
Notions énergétiques transverses : transport, conversion, stockage et énergie	Module	20h			2
électrique					
Projets	Module				3
Sciences de l'information et société numérique (SIS)	Module				
Société numérique : Enjeux et Régulation	Module	10h	9h	23h	3
Enjeux Stratégiques du Numérique	Module		2h		4
Télécommunications, Apprentissage et Technologie de l'Information	Module	40h	4h	6h	4
Analyse Statistique de l'Information	Module	36h	8h	16h	4
Codage et Recherche de l'Information	Module	24h		16h	4
Projet	Module				2
Alternant - Alternance Entreprise	Module				
Interculturel, gestion de projet	Module		40h		6
Compétences en Alternance CEA 4	Module				19
CEE 2 - Rapport d'alternance 2A	Module				5
Alternant - Alternance Recherche	Module				
Interculturel, gestion de projet	Module		40h		6
Compétences en alternance Recherche CEA4	Module				19
Stage 2A (en entreprise)	Module				5
Alternant - Alternance Entrepreunariat	Module				_
Interculturel, gestion de projet	Module		40h		6
CEA 4 (rapport + soutenance pour la période mi février - fin mai)	Module				19
Stage 2A en entreprise (autre que la leur)	Module				5

Semestre 9

	Nature	СМ	TD	TP	Crédits
Tronc Commun	Module				
L'ingénieur face aux enjeux de stratégie et d'innovation	Module	20h			1
L'ingénieur face aux enjeux éthiques et humains	Module	18h	2h		2
Langues et Cultures Internationales 9	Module				2
Filières Métier	Module				
Analyse des Données et Aide à la Décision (ADAD)	Module				
Les métiers de la data	Module	20h			2
Aide à la décision	Module	15h			2
Data-visualisation	Module	15h			2
Data-analyse	Module	15h			1
Production et exploitation de données	Module				1
Projet ADAD	Module				1
Audit & Conseil (AUC)	Module				
Conseil	Module	42h			3
Audit	Module	40h			3
Projet AUC	Module				3
Conception, Bureau d'Etudes (CBE)	Module				
Dimensionnement	Module	18h	22h		3
Conception de produit	Module	18h	22h		3
Projet CBE	Module				3
Entrepreneuriat (ENT)	Module	36h	4h		3
Fondamentaux du management	Module	28h			3
Entrepreneuriat	Module	37h	6h		3
Projet ENT	Module				3
Production & Logistique (PRL)	Module				
Gestion des opérations	Module	11h	12h	16h	3
Logistique industrielle	Module	16h	9h	16h	3
Projet PRL	Module	30h			3
Recherche & Développement (R&D)	Module				
Outils et méthodes pour la R&D et l'innovation	Module	23h			3
Organisation, contrats et valorisation de la recherche	Module	23h			3
Projet R&D	Module				3
Management Opérationnel (MO)	Module				9
WEICUBE	Module				3
Elective 2	Module				
Elective à confirmer	Module				2
Elective à confirmer	Module				2
Alternant (ALT)	Module				9
Alternant Entreprise	Module				-
Alternant Recherche	Module				
Alternant Entrepreneuriat	Module				

Options d'approfondissement		Module				
Photonique, images, communicaion, signal, science	es de la lumière (PICSEL)	Module				
Temps 1	,	Module				8
Fondamentaux de la Photonique		Module	80h		20h	8
Smart Systems		Module	70h	16h	14h	8
Telecom et IoT		Module	60h	10h	30h	8
Temps 2		Module				8
Imagerie Avancée pour le Biomédical		Module	70h	12h	10h	8
Images: Formation, Perception & Représentati	ion	Module	66h	6h	22h	8
Science des données et apprentissage statisti		Module	44h	12h	18h	8
Matériaux et structures, fluides, mer (MECA)	-1	Module				
Parcours Fluides : énergie, transports, environne	ment, santé (FFTFS)	Module				
Temps 1		Module				
Ondes en mécanique		Module	8h	8h	8h	2
Turbulence		Module	16h	8h	0	2
Aérodynamique		Module	12h	011	12h	2
Électif à choisir dans le Menu 1		Module	1211		1211	2
Temps 2		Module				_
Transferts turbulents		Module	16h	8h		2
Ecoulements diphasiques		Module	16h	8h		2
Ecoulements géophysiques		Module	16h	OH	8h	2
Électif à choisir dans le Menu 2		Module	1011		OH	2
Parcours Génie Mer (GM)		Module				_
Temps 1		Module				
Ondes en mécanique		Module	8h	8h	8h	2
Hydrodynamique marine Première partie		Module	OH	OH	OH	2
Ingénierie Côtière		Module				2
Abaqus		Module				2
Temps 2		Module				_
Hydrodynamique marine Deuxième partie		Module				2
Sedimentologie et Mécanique des sols		Module				2
Génie Côtier		Module				2
Opérations Marines		Module				1
Corrosion		Module				1
Parcours Modélisation Mécanique des Matériaux	v at das Structuras (M3S)	Module				Į
Temps 1	x ct des structures (14100)	Module				
Ondes en mécanique		Module	8h	8h	8h	2
Structures minces et instabilités		Module	16h	8h	OH	2
Comportement des matériaux - Plasticité		Module	14h	8h	2h	2
Outils logiciels en mécanique - Bases		Module	8h	2h	14h	2
Temps 2		Choix	OH	211	1-111	_
4 électifs à choisir dans les Menus 2 et 3		Module				
Electifs		Module				
Menu 1		Module				
Aéroacoustique		Module	16h	8h		2
Biomécanique et micro hydrodynamique		Module	16h	4h	4h	2
Menu 2		Choix	1011	711	711	_
Interactions fluide structure		Module	12h		12h	2
Milieux diphasiques et interactions fluide-so	olide	Module	12h	4h	8h	2
Génie civil	OHAC	Module	12h	12h	JII	2
	e II I (eees sees)	Choix	1 411	1 411		_
7 / 675 ^{Menu 3} Composites et stratifiés	Syllabus (2022-2023)	Module	16h	4h	4h	2.
Dynamique rapide et crash		Module	8h	8h	8h	2.
Tenue des matériaux et des structures		Module	011 18h	6h	OH	2
3						/

Semestre 10

	Nature	СМ	TD	TP	Crédits
Tronc Commun	Module				
L'ingénieur face aux enjeux de création de valeur et croissance durable	Module	16h			1
Langues et Cultures Internationales 10	Module				1
Travail de Fin d'Etudes	Module				15

Photonique, images, communicasion, signal, sciences de la lumière (PICSEL) Module	Options d'approfondissement	Module				
Ingémierie Quantique et Technologies Emergentes	Photonique, images, communicaion, signal, sciences de la lumière (PICSEL)	Module				
Systèmes embarqués	Temps 3	Module				
Technologies Spatiales	Ingénierie Quantique et Technologies Emergentes	Module	50h	24h	10h	8
Projet PICSEL Module Mod	Systèmes embarqués	Module	40h	20h	40h	8
Matériaux et structures, fluides, mer (MECA) Module Nodule	Technologies Spatiales	Module				8
Parcours FETES : Fluides : énergie, transports, environnement, santé Module Temps 3 Module M	Projet PICSEL	Module				5
Méthodes numériques en mécanique Module Méthodes expérimentales Module Module Methodes expérimentales Methodes Metho	Matériaux et structures, fluides, mer (MECA)	Module				
Méthodes numériques en mécanique Module 10h 6h 8h 2 Méthodes expérimentales Module 8h 16h 2 Energies nouvellas et renouvelables Module 16h 8h 2 Dispersion de polluants Module 16h 8h 2 Parcours Génie Mer (GM) Module Module 8h 16h 2 Méthodes numériques en mécanique Module 8h 16h 2 Méthodes expérimentales Module 8h 16h 2 Spécialité éclien Module Module 4 5 Parcours Modélisation Mécanique des Matériaux et des Structures (MSS) Module 16h 6h 8h 2 Parcours Modélisation Mécanique des Matériaux et des Structures (MSS) Module 16h 2h 6 4 Parcours Modélisation Mécanique des Matériaux et des Structures (MSS) Module 16h 2h 6 2 Dynamique des structures Module 16h 2h 6 4 6 6	Parcours FETES : Fluides : énergie, transports, environnement, santé	Module				
Méthodes expérimentales Module 8h 16h 2 Energies nouvelles et renouvellables Module 16h 8h 2 Dispersion de polluntats Module 16h 8h 2 Parcours Génie Mer (GM) Module Module Nodule Nodule Nodule Nodule 16h 8h 2 Méthodes numériques en mécanique Module Module Module 4 16h 2 4 Spécialité éolien Module Module Module Module 4 2 4 Parcours Modélisation Mécanique des Matériaux et des Structures (M3S) Module 16h 8h 2 Méthodes numériques en mécanique Module 16h 2h 6h 2 Méthodes numériques en mécanique Module 10h 6h 8h 2 Outils logiciels an mécanique Améthodes numériques en mécanique Module 12h 6h 4 Outils logiciels en mécanique Améthodes Module 8h 2 2 </td <td>Temps 3</td> <td>Module</td> <td></td> <td></td> <td></td> <td></td>	Temps 3	Module				
Energies nouvelles et renouvelables Module 16h 8h 2	Méthodes numériques en mécanique	Module	10h	6h	8h	2
Dispersion de polluants	Méthodes expérimentales	Module	8h		16h	2
Parcours Génie Mer (GM) Module Temps 3 Module Module Module Module Methodes numériques en mécanique Module Module Module Module Spécialité éolien Module Spécialité delien Module Spécialité Avair Module Module Spécialité avair Module Module Module Parcours Modélisation Mécanique des Matériaux et des Structures (M3S) Module Temps 3 Module Module Module Module Module Module Module Module Nommeriques en mécanique Module Module Module Nommeriques en mécanique Module Module Nommerique Module Nommerique des structures Module Nommerique Module Nommerique Module Nommerique Module Nommerique Module Nommerique Module Nommerique Nommerique - Avancé Module Nommerique Module Nommerique - Avancé Module Nommerique Module Nommerique - Avancé Module Nommerique Module Nommerique - Avancé Nomerique - Avancé Module Nommerique - Avancé Module Nommerique - Avancé Module Nommerique - Avancé Nomerique - Avancé Nom	Energies nouvelles et renouvelables	Module	16h	8h		2
Methodes numériques en mécanique Module 10h 6h 8h 2	Dispersion de polluants	Module	16h	8h		2
Méthodes numériques en mécanique Modulle 10h 6h 8h 2 Méthodes expérimentales Module 8h 16h 2 Spécialité éolien Module 4 Spécialité naval Module 4 Parcours Modélisation Mécanique des Matériaux et des Structures (M3S) Module 16h 8h 2 Temps 3 Module 16h 6h 8h 2 Dynamique des structures Module 16h 6h 2 Comportement des matériaux - Grandes déformations Module 12h 8h 4h 20h 2 Outils logiciels en mécanique - Avancé Module 4h 20h 2 Projet MECA Module 4h 20h 2 Projet MECA Module 4h 20h 2 Projet MECA Module 8h 4h 2 Parcoration Expécialité à au choix Module 8h 4h 2 Parcoration Données et décision Module 8h 2h <	Parcours Génie Mer (GM)	Module				
Méthodes expérimentales Module 8h 16h 2 Spécialité oblien Module 4 4 Spécialité naval Module 4 Parcours Modélisation Mécanique des Matériaux et des Structures (M3S) Module 10h 6h 8h 2 Méthodes numériques en mécanique Module 10h 6h 8h 2 Dynamique des structures Module 10h 6h 2h 2 Comportement des matériaux - Grandes déformations Module 12h 8h 4h 2 Outils logiciels en mécanique - Avancé Module 4h 20h 2 Projet MECA Module 4h 20h 2 Projet MECA Module 4h 20h 2 Projet MECA Module 4h 20h 2 Porjet MECA Module 4h 20h 2 Parcours Dinaise et Décisions Module 8h 4h 2 Spécialité: Actuariat Module 80h 4h	Temps 3	Module				
Spécialité éolien Module 4 4 Spécialité naval Module 4 4 Parcours Modélisation Mécanique des Matériaux et des Structures (M3S) Module	Méthodes numériques en mécanique	Module	10h	6h	8h	2
Spécialité naval Module Parcours Modélisation Mécanique des Matériaux et des Structures (M3S) Module Module Temps 3 Module Méthodes numériques en mécanique Module Module 10h 6h 8h 2 Dynamique des structures Module 10h 6h 8h 2 Dynamique des structures Module 12h 8h 4h 2 Module Module Module Module 12h 8h 4h 2 Module M	Méthodes expérimentales	Module	8h		16h	2
Parcours Modélisation Mécanique des Matériaux et des Structures (M3S) Module Module Module Module Module Module Module Module Module 10h 6h 8h 2 Dynamique des structures Module 16h 2h 6h 2 Comportement des matériaux - Grandes déformations Module 12h 8h 4h 2 Outils logiciels en mécanique - Avancé Module 4h 20h 2 Projet MECA Module 4h 20h 2 Pornamique set écisions Economiques et Financières (DDEFI) Module Module 4h 20h 2 Parcours Données et décision Module Module 8lh 8 8h 8h <t< td=""><td>Spécialité éolien</td><td>Module</td><td></td><td></td><td></td><td>4</td></t<>	Spécialité éolien	Module				4
Temps 3	Spécialité naval	Module				4
Méthodes numériques en mécanique Module 10h 6h 8h 2 Dynamique des structures Module 16h 2h 6h 2 Comportement des matériaux - Grandes déformations Module 12h 8h 4h 2 Outils logiciels en mécanique - Avancé Module Module 4h 20h 2 Projet MECA Module Module Module Module 5 Données et Décisions Economiques et Financières (DDEFI) Module Module F 5 Parcours Données et décision Module Module 8h 8 8 Spécialité : Analyse et données Module 80h 8 8 8 8 8 9 8 8 8 8 9 8 8 8 8 9 8 8 8 8 8 8 8 8 9 9 8 8 9 9 8 9 9 8 9 9 8 9 </td <td>Parcours Modélisation Mécanique des Matériaux et des Structures (M3S)</td> <td>Module</td> <td></td> <td></td> <td></td> <td></td>	Parcours Modélisation Mécanique des Matériaux et des Structures (M3S)	Module				
Dynamique des structures	Temps 3					
Comportement des matériaux - Grandes déformations Module 12h 8h 4h 2 Outils logiciels en mécanique - Avancé Module 4h 20h 2 Projet MECA Module Module 4h 20h 2 Projet MECA Module Temps 3 : Une spécialité au choix Module Parcours Données et décision Module Spécialité : Actuariat Module Spécialité : Actuariat Module Spécialité : Actuariat Module Spécialité : Analyse et données Module Spécialité : Mathématiques financières Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Spécialité : Finance d'entreprise Module 70h 8 Projet DDEFI Module 70h 8 Projet DDEFI Module 70h 8 Projet Que re t'Humain (CLIMATHS) Module 70h 8 L'anthropocène et ses futurs Module 16h 8 Apprentissage statistique Module 16h 9 Valeurs extrêmes et climat Module 12h 8h 4h 9 Projet CLIMATHS Module 12h 8h 4h 9 Projet GLIMATHS Module 12h 8h 4h 9 Projet GLIMATHS Module 12h 8h 4h 9 Projet CLIMATHS Module 12h 8h 4h 9 Projet GLIMATHS Module 50h 18h 20h 8 8 Projet GREEN Module 50h 18h 20h 8 8	Méthodes numériques en mécanique	Module	10h		8h	2
Outils logiciels en mécanique - Avancé Module Projet MECA Module Projet MECA Module Sonnées et Décisions Economiques et Financières (DDEFI) Module Parcours Données et décision Module Parcours Données et décision Module Spécialité au choix Module Spécialité : Actuariat Module Spécialité : Actuariat Module Spécialité : Analyse et données Module Spécialité : Mathématiques financières Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Projet DDEFI Module Projet DLIMATHS Module Projet CLIMATHS MODULE PROJET PR			16h	2h		
Projet MECA Données et Décisions Economiques et Financières (DDEFI) Temps 3 : Une spécialité au choix Parcours Données et décision Spécialité : Actuariat Spécialité : Analyse et données Module Parcours Finance Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Spécialité : Finance d'entreprise Module Module Module Module Temps 3 L'anthropocène et ses futurs Module Valeurs extrèmes et climat Apprentissage statistique Reconstruction de données Module Projet CLIMATHS De la ressource au produit. Chimie et procédés durables (GREEN) Module Temps 3 : 2 électifs au choix Projet GREEN Module Module Temps 3 : 2 électifs au choix Projet GREEN Module Projet GREEN Module Mo	·			8h		
Données et Décisions Economiques et Financières (DDEFI) Temps 3 : Une spécialité au choix Parcours Données et décision Module Spécialité : Actuariat Spécialité : Actuariat Module Spécialité : Analyse et données Parcours Finance Spécialité : Mathématiques financières Module Spécialité : Mathématiques financières Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Projet DDEFI Module Temps 3 L'anthropocène et ses futurs Valeurs extrêmes et climat Apprentissage statistique Apprentissage statistique Module Reconstruction de données Module Projet CLIMATHS Module Temps 3 : 2 électifs au choix Projet CLIMATHS Module Temps 3 : 2 électifs au choix Projet GREEN Info (INFO) Parcours DO-IT : Développement et Organisation en IT Module Parcours StMaintenir et développer Syllabus (2022-2023) Module Modul			4h		20h	
Temps 3 : Une spécialité au choix Parcours Données et décision Module Spécialité : Actuariat Module Spécialité : Actuariat Module Spécialité : Analyse et données Module Spécialité : Manalyse et données Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Spécialité : Finance d'entreprise Module Temps 3 Projet DDEFI Module Temps 3 L'anthropocène et ses futurs Module Valeurs extrêmes et climat Apprentissage statistique Module Reconstruction de données Module Temps 3 : 2 électifs au choix Projet CLIMATHS De la ressource au produit. Chimie et procédés durables (GREEN) Module Temps 3 : 2 électifs au choix Projet GREEN Module Modul						5
Parcours Données et décision Spécialité : Actuariat Spécialité : Analyse et données Module Spécialité : Analyse et données Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Temps 3 Projet DDEFI Module Temps 3 Module Temps 3 Module Temps 3 Module Temps 3 Module Apprentissage et de ses futurs Valeurs extrêmes et climat Apprentissage statistique Module Apprentissage statistique Module Temps 3: 2 électifs au choix Module Temps 3: 2 électifs au choix Module Projet CLIMATHS Module Temps 3: 2 électifs au choix Module Frojet GREEN Module Module Module Module Module Module Module Frojet GREEN Module						
Spécialité : Actuariat Spécialité : Analyse et données Module Spécialité : Analyse et données Module Spécialité : Mathématiques financières Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Spécialité : Finance d'entreprise Module Tomps 3 Module Temps 3 Module Tamps 3 Module L'anthropocène et ses futurs Module Apprentissage statistique Module Reconstruction de données Module Temps 3 : 2 électifs au choix Projet CLIMATHS De la ressource au produit. Chimie et procédés durables (GREEN) Module Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Module Nodule Nodule Module Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Module Mo						
Spécialité : Analyse et données Module Parcours Finance Module Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module 70h 8 Spécialité : Finance d'entreprise Module 28h 70h 70h 70h 70h 70h 70h 70h 70h 70h 70						
Parcours Finance Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module Projet DDEFI Module Temps 3 Module L'anthropocène et ses futurs Module Apprentissage statistique Module Reconstruction de données Module Projet CLIMATHS Module Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Modu						
Spécialité : Mathématiques financières Module Spécialité : Finance d'entreprise Module 70h 8 Projet DDEFI Module 70h 55 Mathématiques et Modélisation pour le Climat, la Terre et l'Humain (CLIMATHS) Module 8 Temps 3 Module 28h 8 L'anthropocène et ses futurs Module 16h 49h 44h 49h 70h 89h 44h 89h 49h 49h 89h 49h 49h 89h 49h 49h 89h 49h 49h 89h 49h 89h 49h 49h 89h 49h 89h 49h 89h 49h 89h 49h 89h 49h 49h 89h 49h 89h 49h 49h 89h 49h 49h 49h 89h 49h 49h 49h 89h 49h 49h 49h 49h 89h 49h 49h 49h 49h 49h 49h 49h 49h 49h 4			80h			8
Spécialité : Finance d'entreprise Module 70h 5 Projet DDEFI Module 5 Mathématiques et Modélisation pour le Climat, la Terre et l'Humain (CLIMATHS) Module 28h L'anthropocène et ses futurs Module 16h Apprentissage statistique Module 12h 8h 4h Reconstruction de données Module 12h 12h 8h 4h Projet CLIMATHS Module 12h 12h 8h 4 Projet CLIMATHS Module 12h 12h 8h 4 Projet CLIMATHS Module 12h 12h 8h 4 Production éco-responsable Module Temps 3 : 2 électifs au choix Module Production éco-responsable Module 52h 18h 20h 8 Bioprocédés et biomolécules Module 50h 18h 20h 8 Projet GREEN Module 50h 35h 5 Développement et Organisation en IT Module 50h 35h 5 Développement : amélioration continue Module 50h 35h 5			1			
Projet DDEFI Mathématiques et Modélisation pour le Climat, la Terre et l'Humain (CLIMATHS) Module Temps 3 Module L'anthropocène et ses futurs Module Valeurs extrêmes et climat Module Apprentissage statistique Module Reconstruction de données Module Projet CLIMATHS Module De la ressource au produit. Chimie et procédés durables (GREEN) Module Temps 3 : 2 électifs au choix Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Soh Nodule Projet GREEN Module Projet GREEN Module Projet GREEN Module Soh Nodule Projet GREEN Module Module Projet GREEN Module Soh Nodule Module Projet GREEN Module Soh Nodule Module Module						
Mathématiques et Modélisation pour le Climat, la Terre et l'Humain (CLIMATHS) Temps 3 L'anthropocène et ses futurs Valeurs extrêmes et climat Apprentissage statistique Reconstruction de données Projet CLIMATHS De la ressource au produit. Chimie et procédés durables (GREEN) Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Projet GREEN Info (INFO) Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Module Modu			70h			
Temps 3 L'anthropocène et ses futurs Module Valeurs extrêmes et climat Module Apprentissage statistique Module Reconstruction de données Module Projet CLIMATHS Module Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Projet GREEN Module Projet GREEN Module Mod	•					5
L'anthropocène et ses futurs Valeurs extrêmes et climat Apprentissage statistique Reconstruction de données Module Projet CLIMATHS De la ressource au produit. Chimie et procédés durables (GREEN) Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Module Module 58h Module 12h 8h 4h 4h 8h 4h 4h 8h 4 40h 55 Module 40h 35h Module 50h 4						
Valeurs extrêmes et climat Apprentissage statistique Apprentissage statistique Reconstruction de données Module Projet CLIMATHS Module Temps 3 : 2 électifs au choix Apprentissage statistique Module Temps 3 : 2 électifs au choix Module Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Module Module 50h 4						8
Apprentissage statistique Reconstruction de données Module Projet CLIMATHS Module Temps 3 : 2 électifs au choix Module Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Projet GREEN Module Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Module Module Module 40h Module Module						
Reconstruction de données Module Projet CLIMATHS Module Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Projet GREEN Module Frojet GREEN Module Module Module Frojet GREEN Module Module Frojet GREEN Module Projet GREEN Module Module Farcours DO-IT : Développement et Organisation en IT Module 9 / 675 Module Modu				0.1	41	
Projet CLIMATHS De la ressource au produit. Chimie et procédés durables (GREEN) Temps 3 : 2 électifs au choix Module Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Projet GREEN Module Frojet GREEN Module Projet GREEN Module Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Développement : amélioration continue Module 5 Module 40h 35h						
De la ressource au produit. Chimie et procédés durables (GREEN) Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Projet GREEN Module Projet GREEN Info (INFO) Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Développement : amélioration continue Module 40h 35h			12h	12h	8h	
Temps 3 : 2 électifs au choix Production éco-responsable Bioprocédés et biomolécules Projet GREEN Info (INFO) Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Développement : amélioration continue Module Module 40h 35h 4	-					5
Production éco-responsable Bioprocédés et biomolécules Module Projet GREEN Module Farcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Développement : amélioration continue Module 52h 18h 20h 8 Module 50h 5 Module 50h 4						
Bioprocédés et biomolécules Projet GREEN Info (INFO) Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 Temps 3 : Maintenir et développer Syllabus (2022-2023) Développement : amélioration continue Module 50h 18h 20h 8 Module 5 Module 50h 4	·		FOL	1.01	001	0
Projet GREEN Module 5 Info (INFO) Module Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 ^{Temps 3 : Maintenir et développer Syllabus (2022-2023) Module 40h 35h Développement : amélioration continue Module 50h 4}	·					
Info (INFO) Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 ^{Temps 3 : Maintenir et développer} Syllabus (2022-2023) Développement : amélioration continue Module 40h 35h Module 50h	·		bun	1811	ZUN	
Parcours DO-IT : Développement et Organisation en IT Module 9 / 675 ^{Temps 3} : Maintenir et développer Syllabus (2022-2023) Développement : amélioration continue Module 40h 35h Module 50h	•					Э
9 / 675 ^{Temps 3 : Maintenir et développer} Syllabus (2022-2023) Module 40h 35h Développement : amélioration continue Module 50h 4						
Développement : amélioration continue Module 50h 4			10h	25h		
				3311		Λ
Organisation: lean engineering Module 50h 4	Organisation : lean engineering	Module	50h			
Formation tutorée Module 2			JUII			

Mécanique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Présenter les concepts et les outils de la mécanique des milieux continus déformables (MMC).

Cette discipline scientifique concerne l'étude du mouvement et de la déformation des systèmes sous l'action des forces. Elle permet de modéliser la plupart des problèmes de mécanique rencontrés par les ingénieurs dans les applications.

Citons, à titre d'exemple, l'analyse de l'écoulement de l'air autour d'une pale d'éolienne en vue d'optimiser ses performances, l'étude de la déformation et la résistance de ces mêmes pales sous un vent extrême et, enfin, l'impact des nuisances acoustiques générées par l'éolienne dans un environnement proche.

Ce cours de mécanique des milieux continus (MMC) a été conçu pour supporter de façon cohérente l'ensemble des cours avancés de mécanique de deuxième et troisième années de la formation d'ingénieur. Les concepts fondamentaux de la discipline sont présentés au plus haut niveau des connaissances actuelles selon une présentation unifiée valable pour tous les milieux continus macroscopiques fluides et solides.

Parce qu'elle limite le nombre de notions essentielles, cette vision est pédagogiquement efficace, et elle prépare au mieux les élèves à la modélisation des systèmes mécaniques complexes multi physiques et multi-échelles.

Description du programme

La première partie de ce cours est consacrée aux concepts généraux de la discipline :

- * Algèbre et analyse tensorielle Concepts fondamentaux de la MMC
- * Déformation des milieux continus : tenseurs de déformation
- * Efforts dans les milieux continus : tenseurs des contraintes
- * Équations générales de la MMC : conservation de la masse, principe fondamental de la dynamique, premier et second principes de la thermodynamique

La suite du cours concerne trois applications prioritaires pour un ingénieur :

1) L'élasticité linéaire

- * Passage des équations générales de MMC aux équations de l'élasticité
- * La relation de comportement d'un solide élastique linéaire Quelques résolutions analytiques de problèmes d'élasticité
- * Notions sur la résolution numérique par éléments finis

2) La mécanique des fluides

- * Traduction des équations générales de MMC pour les écoulements de fluides incompressibles Comportement des fluides newtoniens
- * Résolution de problèmes classiques de mécanique des fluides
- * Circuits hydrauliques

3) L'acoustique linéaire

- * Passage des équations générales de MMC aux équations de l'acoustique
- * Propagation des ondes acoustiques, notion de modes acoustiques

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Maîtrise d'une discipline scientifique permettant de créer de la valeur et de l'innovation
- * Capacité à comprendre, formuler et résoudre un problème complexe multi physique
- * Capacité à élargir le champ des connaissances à d'autres disciplines

Modalité de contrôle des connaissances

1) Contrôle continu : lors de chacune des 14 séances de TD, un test sans documents est effectué :

- * Soit un test court de 3 minutes en début de TD (sur 2 points)
- * Soit un test long de 30 minutes à la fin du TD (sur 20 points) en guise de clôture de chaque bloc : MMC, Elasticité, Fluide, Acoustique.
- 2) Évaluation écrite classique (trois heures) « sans documents » à la fin du module.

Bibliographie

* Coirier, Jean, et Jean-Pierre Petit. Mécanique des milieux continus. 2e éd, Dunod, 2001.

- * Paul Germain, Patrick Muller, Introduction à la Mécanique des milieux continus, 2e édition, Masson
- * Paul Germain, Mécanique, Tome I et II, École polytechnique, Ellipse
- * Jean Salençon, Mécanique des milieux continus, Tome I et II, École polytechnique

Equipe pédagogique

Stéphane Bourgeois, Bruno Cochelin, Thierry Désoyer, Marc Jaeger, Lili Kimmoun, Bruno Lombard, Cédric Maury, Daniel Mazzoni, Emmanuelle Sarrouy, Julien Touboul

Total des heures		72h
Cours Magistral	Cours Magistral	26h
TD	Travaux Dirigés	28h
Apprentissage en autonomie	Apprentissage en Autonomie	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Bruno Cochelin

■ bruno.cochelin@centrale-marseille.fr

Physique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Niveau de fin de classe préparatoire.

Objectifs d'apprentissage

- Permettre aux étudiants d'assimiler les postulats fondamentaux de la physique quantique et d'appréhender, notamment, la physique microscopique en termes probabilistes.
- Maîtriser les notions de physique statistique et les fondements des distributions statistiques classiques, quantiques, des potentiels thermodynamiques et chimiques.
- Comprendre les évolutions de la pensée scientifique dans une perspective d'histoire des idées, à mi-chemin entre empirisme et spéculation.
- Être capable d'identifier les implications dans les sciences de l'ingénieur.

Description du programme

Partie physique quantique:

- Limites de l'approche classique

– Dualité onde corpuscule

Formation ingénieur centralien

– Description probabiliste, postulats fondamentaux et mesure
– Description du moment angulaire, orbital et de spin
- Distinction fermions/bosons
- Intrication et non-localité
On illustrera ces concepts avec des exemples concrets, comme l'atome d'hydrogène, l'oscillateur harmonique, l'effet tunnel et les boîtes quantiques.
Partie physique statistique :
– Rappels de probabilité pour la physique,
– Marches aléatoires et diffusion – Construction des équations fondamentales,
– Principes de base et distributions microcanonique et canonique,
– Exemples d'application,
– Éléments sur les distributions grand-canoniques et quantiques,
– Premières notions sur les transitions de phase.
Compétences et connaissances scientifiques et techniques visées dans
la discipline
- Familiariser l'élève avec un cadre conceptuel inhabituel, car différent des intuitions que l'on se forme à notre échelle macroscopique ;
– Apprendre à gérer le non-déterminisme en physique et en sciences de l'ingénieur ;
- Connaître des concepts fondamentaux de la physique qui sont utiles dans de nombreux domaines scientifiques et techniques.
Cet enseignement permet également à l'élève de s'entraîner à :
-1 Identifier les paramètres cruciaux déterminants pour résoudre un problème ;

-2 Inventer des solutions originales ;

- -3 Faire preuve de rigueur mathématique lors de la résolution;
- -4 Intégrer un mode de raisonnement relativement complexe.

Modalité de contrôle des connaissances

Contrôle Continu (CC):

CC1 (partie « Physique Quantique »): 2 écrits qui contribuent pour 50 % de la note finale.

CC2 (partie « Physique Statistique »): 2 écrits qui contribuent pour 50 % de la note finale.

Bibliographie

Partie physique quantique : polycopiés du cours. Livre de Griffith. Solutions de TD et autres disponibles sur Moodle.

Partie physique statistique : livres à la bibliothèque. Quelques documents pour les TD.

Equipe pédagogique

Thomas Durt, Philippe Réfrégier, Georges Bérardi, Frédéric Galland, Lili Kimmoun, Muriel Roche, Julien Fade, Frédéric Schwander, Nicolas Sandeau, Marc Jaeger.

Objectif de Développement Durable

Accès à une éducation de qualité

Accès à des emplois décents

Total des heures		72h
Nouvelles heures d'enseignement	Cours Magistral	34h
Nouvelles heures d'enseignement	Travaux Dirigés	20h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thomas Durt

thomas.durt@centrale-marseille.fr

Informatique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Cette UE est une introduction à l'algorithmique (arbres, graphes, textes), à la complexité, à l'indexation et aux bases de données, outils indispensables pour un ingénieur généraliste.

Le but est en particulier d'amener les étudiants à être capable d'analyser / modéliser un problème donné, d'imaginer un algorithme permettant de le résoudre, de s'interroger sur son efficacité, et de l'implémenter concrètement en faisant des choix pertinents de programmation et en utilisant des structures de données adaptées.

Description du programme

Cette unité d'enseignement aborde :

- # La notion de complexité (pire cas, en moyenne, minimale)
- # Les données de type graphes et les algorithmes associés (parcours, plus court chemin, coloriage...)
- # Les données de type arbres et les algorithmes associés (recherche...)
- # Les données textes et les algorithmes associés (recherche, comparaison...)

- # La programmation dynamique
- # Le stockage et l'indexation des données
- # L'algèbre relationnelle
- # Les bases de données type SQL
- # Bases de la programmation
- # Introduction à la programmation orientée objet

L'enseignement est partagé entre cours magistraux, travaux dirigés focalisé sur les notions algorithmiques et travaux pratiques pour la mise en œuvre avec le langage python.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Savoir mobiliser et utiliser des approches algorithmiques fondamentales
- Maitriser des algorithmes pour des problèmes classiques et savoir les programmer
- Savoir utiliser des structures de données adaptées
- Maitriser les éléments fondamentaux de la syntaxe du langage de programmation python

Modalité de contrôle des connaissances

Mini-tests en début de TD (50%)

Devoir surveillé (50 %)

Bibliographie

It https://wiki.centrale-marseille.fr/informatique/

Equipe pédagogique

T. Artières, F. Brucker, E. Daucé, C. Jazzar, P. Préa, R. Sicre

Total des heures		72h
Nouvelles heures d'enseignement	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Dirigés	20h
Nouvelles heures d'enseignement	Travaux Pratiques	20h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Artieres

■ thierry.artieres@centrale-marseille.fr

Economie-Gestion

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Aucun

Objectifs d'apprentissage

- * Comprendre ce qu'est une entreprise : son environnement, ses fonctions, sa structure et son organisation
- * Comprendre l'utilité et les principes généraux de la science économique
- * Maîtriser les modèles de bases en économie (microéconomie et macroéconomie) et en connaître les limites
- * Savoir appliquer la théorie économique aux enjeux contemporains
- * Comprendre comment extraire des informations sur l'entreprise et son fonctionnement via ses données comptables
- * Comprendre la nécessité d'une homogénéité des règles comptables pour une meilleure comparabilité des entreprises dans le temps et entre elles
- * Comprendre ce qui constitue la gouvernance d'une entreprise, le management stratégique et en saisir les enjeux

Description du programme

L'unité d'enseignement se décline en trois blocs complémentaires : une introduction à l'économie ; une introduction à la comptabilité et une introduction à l'organisation et la gestion de l'entreprise.

Chacune des trois parties suivra le plan suivant :

Introduction à l'économie

1. La démarche scientifique en économie

- 2. Les prises de décisions économiques
- 3. Le marché comme interaction entre ces décisions
- 4. Exercices d'applications (TD 1 & 2): taxes et tarification
- 5. Les externalités : le cas de l'environnement
- 6. Biens publics et externalités positives
- 7. Exercices d'applications (TD 3 & 4): innovation et environnement
- 8. Risque et temps : un apéritif en finance
- 9. Croissance et demande de facteurs : introduction à la macroéconomie

Comptabilité et gestion

- 1. Introduction : Généralités sur les différentes comptabilités
- 2. Données comptables et budget prévisionnel : la comptabilité générale
- 3. Aide à la décision de gestion : la comptabilité analytique
- 4. Choix d'investissement et analyse financière : la finance d'entreprise
- 5. Serious game d'application

Organisation et gestion de l'entreprise

- 1. Culture d'entreprise, éthique et gouvernance
- 2. L'entreprise : environnement, structure, fonctions et organisation
- 3. Responsabilités : Sécurité, Sociale, Sociétale et Environnementale

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir modéliser les prises de décision économiques.
- * Comprendre la formation des fonctions d'offre et de demande et leur interaction sur le marché en fonction du contexte concurrentiel.
- * Comprendre comment l'effet des externalités sur l'équilibre économique et connaître les divers moyens de les corriger.
- * Comprendre comment les forces et choix économiques peuvent créer de la croissance.
- * Savoir lire quelques éléments de rentabilité et de santé financière d'une entreprise
- * Savoir distinguer un investissement d'une charge d'exploitation
- * Savoir estimer la rentabilité probable d'un investissement
- * Savoir élaborer un budget prévisionnel
- * Savoir manipuler et interpréter les notions de point mort et de coût de revient
- * Savoir s'intégrer dans un "système entreprise" en ayant conscience de son rôle et impact vis à vis de la gestion de cette entreprise
- * Identifier les éléments caractéristiques de la culture organisationnelle d'une entreprise et ses règles de gouvernance.
- * Interpréter les orientations stratégiques choisies par une entreprise et leurs déclinaisons opérationnelles.
- * Comprendre les fonctions principales d'une entreprise et la manière dont elles se structurent, se comportent et évoluent au fil du temps.

Modalité de contrôle des connaissances

CC d'économie (TD): 17%

DS d'économie (1h30): 33%

CC de comptabilité (Serious game) : 17%

DS de comptabilité (1h30): 33%

Bibliographie

- * Ebook « L'économie » de CORE Econ : L'https://www.core-econ.org/the-economy/fr/
- * Acemoglu, Laibson et List, Economics, Pearson, 2019.
- * Jos et van Dam. Handbook Organisation and Management: A Practical Approach. Fourth edition, Noordhoff Uitgevers, 2019.

Equipe pédagogique

Renaud Bourlès (Economie)

Nicolas Clootens (Economie)

Cécile Loubet (Comptabilité)

Florian Magnani (Gestion de l'entreprise)

Françoise Perrin (Comptabilité)

Intervenants extérieurs

Objectif de Développement Durable

Éradication de la pauvreté

Lutte contre le changement climatique

Recours aux énergies renouvelables

Partenariats pour la réalisation des objectifs

Réduction des inégalités

Total des heures		72h
Cours	Cours Magistral	24h
TD	Travaux Dirigés	24h
TP	Travaux Pratiques	6h
Autonomie	Apprentissage en Autonomie	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

™ renaud.bourles@centrale-marseille.fr

Activités Physiques Sportives et Artistiques 5

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- Élévation du niveau de compétence dans l'activité physique, sportive et artistique choisie (APSA)
- Capacité à démontrer un fort engagement pour soi et pour son « groupe APSA »
- Capacité à contribuer efficacement au bon fonctionnement de son groupe ou de son équipe
- Capacité à gérer sa vie physique et entretenir son « capital santé »

Description du programme

Chaque élève choisit une APSA éligible pour le semestre.

Une participation hebdomadaire avec le groupe APSA choisi est attendue.

L'enseignement porte sur l'acquisition des procédures permettant la « montée du niveau de compétence sportive ou artistique » et sur la mise en œuvre effective et assidue de ces procédures.

Compétences et connaissances scientifiques et techniques visées dans la discipline

L'élève développe, lors des cours d'APSA, des ressources contribuant à la construction des cinq compétences du programme pédagogique de l'École centrale :

- élaboration de stratégies s'appuyant sur une analyse précise (enjeux, définition des objectifs, contexte, gestion des risques, évaluation de ses propres forces et faiblesses et de celles des partenaires et adversaires);
- prise de décisions en temps réel ou en temps différé à partir d'une perception affinée de l'évolution du contexte ;
- contribution à la construction d'un groupe ou d'une équipe au fonctionnement efficace en considérant et en respectant chacun de ses membres ;
- capacité à agir de façon autonome en vue du développement de son propre niveau de compétence.

Modalité de contrôle des connaissances

Contrôle continu

Les élèves sont évalués sur leur assiduité, sur leur niveau d'engagement pour progresser et sur leur investissement pour un fonctionnement optimal du groupe.

Equipe pédagogique

Professeurs vacataires

Total des heures 15h

Nouvelles heures d'enseignement Travaux Dirigés 15h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Jean Philippe Bayle

jean_philippe.bayle@centrale-marseille.fr

Langues et Cultures Internationales 5

Fn bref

> Langue de cours: Anglais, Chinois, Espagnol, Italien, Japonais, Allemand

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'enseignement des LCI s'inscrit dans la formation de citoyen ne s et ingénieur e s internationaux ales avertire s et responsables.

- * Mobiliser des savoirs et des savoir-faire linguistiques, conceptuels, culturels, communicationnels.
- * Acquérir des connaissances portant sur des pratiques, des événements et/ou phénomènes historiques, culturels, sociaux, économiques et politiques en faisant varier ses représentations.
- * Développer son esprit critique.

Description du programme

- * L'enseignement des LCI comprend deux enseignements distincts par semestre : Anglais (20h) et une autre langue (20h).
- * Attention : les élèves inscrit·e·s en Double Diplôme suivront 2 enseignements de FLE au S5 et S6 sauf si un niveau C1 est déjà validé en FLE (40h).
- * Les élèves ne pourront débuter une langue qu'au semestre 5 (Espagnol, Allemand, Chinois, Japonais, Italien). Ces élèves bénéficieront de 10 heures (italien, espagnol) ou 15 heures (allemand, chinois, japonais) de cours complémentaires de soutien.
- * Possibilité de débuter une LV3 selon les effectifs.

Compétences et connaissances scientifiques et techniques visées dans la discipline

La formation en Langues et Cultures est essentielle à l'identité de l'Ingénieur e Centralien ne qui devra être capable de communiquer et interagir à l'international avec des partenaires de langues et/ou cultures différentes, notamment dans un environnement professionnel.

Langues à maitriser : Français, Anglais + une autre langue choisie pour les élèves français.

Modalité de contrôle des connaissances

* 2 langues (50% chacune de la moyenne). Minimum de 7/20 pour chaque langue.

Les 5 compétences du CECRL seront évaluées (Modalités précisées par l'enseignant·e).

- * Contrôle continu donc présence obligatoire : plus de 2 absences compromettront la validation du semestre.
- * Ces 40 heures de cours en présentiel sont complétées par 10h de travail personnel (travail en autonomie, recherches, exercices...) par langue et par semestre.
- * Les sessions 2 porteront sur les compétences non validées en 1° session et seront gérées individuellement par les enseignant e s.
- * Pour être diplômé.e, l'élève devra valider un niveau d'anglais CECRL B2+ (Toeic 850 ou équivalent) et un niveau B2 en FLE (élèves en Double Diplôme) ou un niveau 3 Orthodidacte Français langue maternelle.

Bibliographie

Bibliographie selon les cours choisis.

Equipe pédagogique

- * Anglais: P. Atkinson, J. Airey, V. Durbec (responsable UE), M. McKimmie, M. Kobliska
- * Espagnol: C. Enoch (responsable LV2), S. Duran, S. Carmoni, E. Munoz, V. Bertrand, Sofia Carmoni
- * Allemand: D. Ortelli van Sloun
- * FLE: V. Hamel
- * Chinois: J. Dong
- * Japonais: K. Yoshida,
- * Italien: S. Canzonieri

Objectif de Développement Durable

Recours aux énergies renouvelables

Villes et communautés durables

Réduction des inégalités

Consommation et production responsables

Justice et paix

Lutte contre le changement climatique

. ©

Egalité entre les sexes

Total des heures

Nouvelles heures d'enseignement

Nouvelles heures d'enseignement

60h Travaux Dirigés 40h

Apprentissage en Autonomie 20h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Valérie Durbec

■ valerie.durbec@centrale-marseille.fr

Train'ing ou Compétences en alternance 72

Fn bref

> Langue de cours: Français

Présentation

Objectifs d'apprentissage

Le contenu des semaines Train'ing est orienté vers la prise de conscience, l'apprentissage par l'action et la mise en situation des élèves pour leur permettre d'acquérir et consolider les compétences attendues de l'ingénieur centralien :

- * Comprendre les principes fondamentaux de la communication interpersonnelle
- * Comprendre la diversité des différents profils de communication et leurs caractéristiques
- * Expérimenter le travail en équipe
- * Prendre conscience des enjeux socio-environnementaux et des enjeux scientifiques

Les autres types d'Alternances (Entreprise, Recherche, Entrepreneuriat) permettent une immersion directe au sein de structures et d'équipes professionnalisantes

Le module « Compétences en alternance » a pour objectif de former ces alternants à une mission spécifique, soit en entreprise, dans un laboratoire ou en dispositif d'accompagnement à l'entrepreneuriat. L'objectif est de se familiariser à un milieu particulier, d'y acquérir les codes, la compréhension du fonctionnement de la structure, de faire émerger des solutions innovantes permettant l'avancée du projet.

Description du programme

Le Train'ing est un lieu dédié à l'intégration des compétences de l'ingénieur centralien articulé autour de 3 grands axes : intégration scientifique, ouverture sociétale et culturelle, compétences métier.\$

Concernant l'intégration scientifique, des activités scientifiques, en lien avec les composantes des compétences C1 (Innovation scientifique et technique) et C2 (Maîtrise de la complexité et des systèmes) sont proposées. Ces activités sont réparties sur 3 jours (24h. étudiant) autour d'un thème en articulant différents formats d'apprentissage (TP, expérience, visite, projet, ateliers, etc).

Les compétences métier regroupent des ateliers d'apprentissage et de pratique des soft skills (Agilité comportementale et Management d'équipe) ainsi que des semaines dédiées à des activités spécifiques du projet innovation (semaines d'idéation) évaluées par un jury.

Enfin, l'ouverture culturelle et sociétale permet aux étudiants une ouverture sur des disciplines telles que les Lettres, les Arts et différents champs des Sciences Humaines et Sociales afin de développer leur capacité à s'approprier d'autres langages, à favoriser leur curiosité et leur créativité.

D'autre part, ces actions de formation favorisent la prise de conscience des étudiants des enjeux sociétaux et environnementaux majeurs. Conformément aux axes stratégiques de l'établissement, les thématiques proposées s'appuient sur les ODD.

Pour les autres type d'alternance, après avoir trouvé une mission en entreprise, dans un laboratoire ou en entrepreneuriat, l'alternant doit tout mettre en place pour comprendre et appréhender l'environnement dans lequel il évolue, bien cerner sa mission, son rôle, bien identifier ses interlocuteurs. Il doit aussi faire des points réguliers avec ses encadrants afin de les tenir informés de sa mission et de son évolution. Le module se termine par deux évaluations, une évaluation de l'école via une soutenance et une évaluation du « tuteur métier ». Les points importants sont :

- * La formation (connaissances de base, aptitudes aux acquisitions, sens de l'analyse, sens de la synthèse, créativité et niveau d'innovation)
- * Le travail et les résultats (niveau de qualité, quantité, efficacité, atteinte des objectifs, respect des délais, prise en main du sujet, maîtrise du sujet)
- * La personnalité (esprit d'initiative, sociabilité, contacts, intérêts, motivation, sens des responsabilités, méthode et organisation, communication, ouverture d'esprit, jugement et réalisme)

Compétences et connaissances scientifiques et techniques visées dans la discipline

L'Alternance est le lieu privilégié d'intégration des compétences de l'ingénieur centralien. A ce titre elles sont toutes les cinq adressées dans les trois piliers des semaines Train'ing : l'intégration scientifique, l'ouverture culturelle et sociétale et les compétences métier et dans les autres dispositifs d'alternance.

Modalité de contrôle des connaissances

Pour l'alternance Train'ing, les différentes actions de formation des trois volets précités sont évaluées en contrôle continu. Chaque semaine donne lieu à une évaluation. L'offre d'ouverture culturelle et sociétale est évaluée à la fois par la présence à un nombre minimum d'actions défini en début d'année et par le rendu de rapports.

Pour les autres Compétences en alternance, une soutenance est organisée ainsi qu'un retour de la structure d'accueil.

Equipe pédagogique

- * E. Sarrouy
- * P Denis

- * J. Bittebierre
- * L. Gallais
- * F. Schwander
- * A. Martinez
- * C. Jazzar
- * B. Chatelet
- * N. Sandeau
- * P. Guichardon
- * F. Anselmet
- * O. Boiron
- * T. Durt
- * F. Lemarquis
- * L. De Riggi
- * D. Hérault
- * V. Merval

Objectif de Développement Durable

Accès à la santé

Consommation et production responsables

Egalité entre les sexes

Lutte contre le changement climatique

Recours aux énergies renouvelables

Total des heures		128h
Nouvelles heures d'enseignement	Travaux Dirigés	24h
Nouvelles heures d'enseignement	Travaux Pratiques	56h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	24h
Nouvelles heures d'enseignement	Projets	24h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

▼ vincent.merval@centrale-marseille.fr

Projet innovation 72

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

À la fin de l'unité d'enseignement, les participants auront une compréhension des activités stratégiques et opérationnelles de la gestion de projet innovants :

Plus spécifiquement, les participants seront capables de :

- Explorer, observer, enquêter pour sélectionner les idées stratégiques qui répondront à un besoin et/ou un usage
- Développer une stratégie de recherche, utiliser les outils adaptés pour trouver des informations fiables et pertinentes sur un sujet précis
- Réaliser une revue de la littérature ou un état de l'art sur un sujet précis
- Réutiliser l'information dans le respect des exigences académiques et déontologiques (savoir citer et éviter le plagiat, utiliser les licences libres)
- Participer à une phase d'idéation et de structuration des idées pour aboutir à la définition d'une idée innovante et réaliste
- Développer une charte de projet et le plan de projet associé

- Définir les activités, les relations et la durée des activités afin de développer l'échéancier du projet
- Gérer les ressources du projet (financières, matérielles et humaines), anticiper et corriger les risques du projet
- Prototyper l'idée choisie et la confronter à un premier échantillon d'utilisateur/usager
- Assurer le suivi du projet progrès, résultats et actions correctives
- Conclure/terminer un projet et s'assurer du transfert adapté

Description du programme

Cette UE comprend 3 modules:

- MOOC : 4 semaines de formation à distance sur 4 parties : Notions fondamentales du management et de l'organisation des projets, L'essentiel pour démarrer un projet, Outils avancés de gestion de projet, Gestion des risques + 2 modules de spécialisation au choix
- Recherche Information : Outils et méthodologie de recherche d'information, évaluation des sources, plagiat, règles de citation et rédaction d'une bibliographie. 4h d'autoformation en ligne et 2h de TP.
- Projet : Le projet débute en octobre et se clôt en juin. Lors de ce projet, les étudiants vont apprendre à maîtriser les méthodes d'exploration, d'idéation et de créativité, la définition et cadrage du projet, la planification, l'organisation du projet, le travail en équipe, le pilotage du projet et sa clôture. Pour cela, de nombreux jalons devront être passés et plusieurs livrables devront être réalisés et validés par l'équipe encadrante.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 Innovation scientifique et technique : identification des besoins non-satisfaits, exploration et état de l'art de l'existant, proposition de solutions répondant à la problématique
- C2 Maitrise de la complexité et des systèmes : complexité issue des solutions techniques, complexité issue des contraintes apportées par les parties prenantes, identification des problématiques et engagement de leurs résolutions
- C3 Direction de programme : aspects techniques (analyse du besoin, conception, planification, et suivi de projet) aves aspects organisationnels
- C4 Management des hommes : tous les aspects du management d'équipe

C5 Vision stratégique : définition d'une stratégie localisée et mise sous-contrôle de sa déclinaison opérationnelle

Modalité de contrôle des connaissances

Projet : Évaluations MOOC (4QCM + Examen Final), Recherche d'informations (1QCM + Dossier documentaire), Livrables Semaine Idéation (Pitch Video), Livrables intermédiaires (Fiche de synthèse), Rapport en fin de projet, Soutenance finale

Bibliographie

Project Management Institute (2009) Guide du corpus des connaissances en management de projet, Project Management Institute, 4ième édition

Management d'équipe : 7 leviers pour améliorer bien-être et efficacité au travail, Eyrolles, 2ième édition • Brun, J-P. (2013)

Le guide de l'innovation frugale - Les 6 principes clés pour faire mieux avec moins Les 6 principes clés pour faire mieux avec moins - Jaideep Prabhu, Navi Radjou

Open innovation - H. Chesbrough

Dealing with Darwin - G.A. Moore

Le Design Thinking au service de l'innovation responsable - Xavier Pavie, Corinne Jouanny, Daphné Carthy, François Verez

Equipe pédagogique

- * Vincent Merval
- * Benoit Dubost
- Steve Manny
- * Florian Magnani
- * Jean-Paul Delambre

Objectif de Développement Durable

Accès à une éducation de qualité

Accès à des emplois décents

Bâtir une infrastructure résiliente

Total des heures

96h

Nouvelles heures d'enseignement

Projets

96h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

▼ vincent.merval@centrale-marseille.fr

Chimie - Génie des Procédés

En bref

> Langue de cours: Français

Présentation

Objectifs d'apprentissage

En chimie:

- connaître les principes généraux de la cinétique et de la thermodynamique chimique ainsi que

les relations structure - propriétés des molécules

- Connaitre les entités moléculaires réactives
- Connaître les concepts généraux de la réactivité organique

En génie des procédés :

- Savoir appliquer les bilans de matière et d'énergie, avec et sans réaction chimique, en régime permanent sur un système
- Connaître et savoir calculer le volume les réacteurs idéaux (réacteur fermé, parfaitement agité,
 piston) dans des cas simples.
- Dans le cas des réacteurs parfaitement agités, savoir calculer la température adiabatique
- Aborder le régime transitoire

- Appliquer ces connaissances à la distillation d'un mélange binaire
- Connaître la thermodynamique des équilibres liquide/vapeur
- Savoir dimensionner une colonne de rectification à plateaux en modes continus et batch.

Description du programme

En Chimie:

Structure moléculaire :

- 1. Elément chimique et atome Configurations électroniques Théorie de Lewis Géométrie des
- molécules Modèle quantique de l'atome Orbitales moléculaires Méthode de Hückel
- 2. Cinétique chimique formelle Vitesse et ordre de réaction et constante de vitesse Cinétique

des réactions complexes (réactions parallèles, consécutives) - Mécanistique -

Thermodynamique de l'activation – Contrôle cinétique/thermodynamique

- 3. Thermodynamique chimique État standard Fonctions d'état Grandeurs molaires
- partielles Grandeurs de réaction Premier principe et applications Le potentiel chimique –

Second principe et évolution des systèmes chimiques

Réactivité organique:

- 1. Stéréochimie statique (chiralité centrale, axiale) Stéréochimie dynamique (analyse conformationnelle)
- 2. Réactivité des alcanes et halogéno-alcanes, espèces réactives Substitution nucléophile Élimination
- 3. Contrôle cinétique, contrôle thermodynamique contrôle orbitalaire, contrôle de charge, contrôle stérique

En Génie des Procédés:

- 1. Bilans et réacteur :
- Découverte du génie des procédés et des opérations unitaires

- Analyse globale d'un procédé de fabrication
- Application des bilans globaux et partiels sans réaction chimique
- Application des bilans globaux et partiels avec réaction chimique
- Bilan d'énergie, avec et sans réaction chimique
- Introduction sur les réacteurs (aspect procédé & technologie)
- Cas particulier des réacteurs idéaux
- 2. Distillation d'un mélange binaire :
- Introduction aux méthodes séparatives
- Thermodynamique des équilibres liquide/vapeur
- La distillation flash
- La rectification en mode continu : dimensionnement par la méthode de Mac Cabe et Thiele
- La rectification en mode batch : équation de Rayleigh et dimensionnement.

Compétences et connaissances scientifiques et techniques visées dans la discipline

En Chimie:

- Etre capable d'appréhender la cinétique et la thermodynamique des transformations moléculaires
- Savoir identifier les espèces réactives d'un système chimique, savoir formuler des hypothèses de mécanisme réactionnel
- Prévoir la sélectivité et la stéréochimie d'une transformation moléculaire.

Modalité de contrôle des connaissances

DS Chimie (2/3) - GP (1/3): 50 %

CC (TD + TP + TA) Chimie (2/3) - (TD + TA) GP (1/3): 50 %

Bibliographie

Ressources en ligne sur le portail pédagogique de l'École centrale

Ouvrages (centre de documentation)

Equipe pédagogique

Chimie:

- * Bastien Chatelet
- * Laurent Giordano
- * Alexandre Martinez
- * Didier Nuel
- * Innocenzo De Riggi
- * Anne-Doriane Manick
- * Cédric Colomban
- * Louise Miton
- * Emile Vandeputte

Génie des procédés :

- * Pierrette Guichardon
- * Pascal Denis
- * Nelson Ibaseta
- * René Arnaud

Objectif de Développement Durable

Consommation et production responsables

Total des heures		96h
Nouvelles heures d'enseignement	Cours Magistral	36h
Nouvelles heures d'enseignement	Travaux Dirigés	32h
Nouvelles heures d'enseignement	Travaux Pratiques	4h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	24h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alexandre Martinez

■ alexandre.martinez@centrale-marseille.fr

Mathématiques

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- * Cours d'Analyse et d'Algrèbe : programme de CPGE (MP, PC, PSI ou MPI) ou deux premières années d'une licence à dominante mathématiques
- * Un cours d'Introduction aux Probabilités Discrètes est recommandé.

Objectifs d'apprentissage

- * Savoir mobiliser et utiliser des approches mathématiques de base dans d'autres disciplines scientifiques
- * Savoir mettre en œuvre des méthodes numériques adaptées à un problème
- * Savoir reconnaître une situation présentant un aléa et être capable de la modéliser, être capable d'estimer les paramètres sousjacents dans des cas simples

Description du programme

L'UE est scindée en trois parties distinctes. La partie d'Analyse Théoriqe aborde les bases de l'analyse, la partie Analyse Numérique introduit les bases du calcul scientifique et la partie Probabilités et Statistique introduit les bases de l'étude des situations aléatoires.

- 1. Analyse Théorique
 - 1. Calcul différentiel
 - 2. Optimisation,
 - 3. Intégration de Lebesgue,
 - 4. Transformations de Fourier,

- 5. Espaces de Hilbert.
- 2. Analyse Numérique
 - 1. Méthodes itératives,
 - 2. Approximation polynomiale,
 - 3. Intégration numérique,
 - 4. Approximation numérique de solutions d'équations différentielles ordinaires,
 - 5. Méthodes de différences finies pour les équations aux dérivées partielles
- 3. Probabilités et Statistique
 - 1. Fondements du calcul des probabilités,
 - 2. Variables aléatoires réelles et la caractérisation de leurs lois (fonction caractéristique, fonction génératrice),
 - 3. Suites de variables aléatoires et modes de convergence,
 - 4. Couples de variables aléatoires et vecteurs aléatoires
 - 5. Statistique: estimations ponctuelles et par intervalle.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Bases de l'analyse et de l'analyse numérique, théorie des probabilités, éléments de statistique paramétrique.
- * Reconnaître et savoir appliquer les principaux outils de l'Analyse Théorique en Analyse Numérique, en Probabilités, en Statistique et dans d'autres domaines scientifiques
- * Savoir approximer une fonction par des méthodes numériques
- Savoir approcher numériquement la solution d'équations différentielles ordinaires et d'équations aux dérivées partielles.
- * Savoir les fondements des probabilités et connaître les principales lois de probabilités
- * Connaître les modes de convergence de suites de variables aléatoires et savoir appliquer les principaux théorèmes des probabilités : Loi des Grands Nombres, Théorème Central Limite
- * Mettre en oeuvre une procédure d'estimation ponctuelle ou par intervalle dans des lois de probabilité dépendant d'un paramètre

Modalité de contrôle des connaissances

- 1. CC (40%): mini-tests pendant les séances (CM, TD, TA), QCM, projets, compte-rendus de TP
- 2. DS (60 %): interrogation écrite en temps limité en fin

Bibliographie

Polycopiés de cours

Equipe pédagogique

- 1. **Analyse Théorique** : Thibaut Le Gouic (resp. S5 et S6), Guillaume Chiavassa, Jean-Marie Rossi, Magali Tournus, Frédéric Schwander, Chiheb Daaloul,
- 2. **Analyse Numérique** : Guillaume Chiavassa (resp. S5 et S6), Jean-Marie Rossi, Frédéric Schwander, Magali Tournus, Chiheb Daaloul
- 3. **Probabilité et statistique**: Mitra Fouladirad (resp. S5), Christophe Pouet (resp. S6), Emmanuelle Sarrouy, Magali Tournus, Frédéric Schwander, Thibaut Le Gouic, Chiheb Daaloul,

Total des heures		96h
Nouvelles heures d'enseignement	Cours Magistral	36h
Nouvelles heures d'enseignement	Travaux Dirigés	36h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	24h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Mitra Fouladirad

mitra.fouladirad@centrale-marseille.fr

Ondes et Signal

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Objectifs d'apprentissage

ONDES:

- Avoir une intuition sur les aspects fondamentaux des phénomènes ondulatoires, tels que la composition des paquets d'ondes par superpositions de Fourier, la relation d'incertitude, et la causalité.
- Comprendre la physique derrière la réponse des milieux matériels aux ondes électromagnétiques et les propriétés optiques résultantes de ces milieux.
- Être capable de décrire la polarisation optique et les phénomènes physiques qui la modifient.
- Comprendre le concept de guide d'ondes et ses applications, ainsi que les effets de dispersion causés à la fois par leur configuration et leurs propriétés matérielles.
- Comprendre le phénomène de diffraction dans le régime paraxial grâce à l'utilisation de la formule de propagation de Fresnel
- Être capable de modéliser des systèmes optiques simples.

SIGNAL:

- Connaître la nature physique des signaux et les processus de leur numérisation.
- Connaître et savoir mettre en œuvre les méthodes de base du traitement du signal.
- Aborder la notion de traitement optimal et maîtriser quelques techniques de filtrage optimal en présence de bruit.
- Réaliser un travail relatif au traitement du signal.
- Mettre à profit les enseignements dispensés dans le cas d'un projet pluridisciplinaire ou d'un travail en autonomie lié aux signaux.

Description du programme

ONDES:

ce cours commence avec une introduction aux équations de la physique, tel que l'équation d'ondes, l'équation de diffusion, et l'équation de continuité. L'étude des ondes optiques suit alors à partir des équations de Maxwell, d'abord en espace libre puis en milieu linéaire. Les propriétés principales de la propagation des ondes électromagnétiques sont décrites, notamment la polarisation, la dispersion, la réfraction et la réflexion, et la diffraction. Ces concepts sont ensuite utilisés pour présenter des applications telles que les guides d'ondes (utilisés pour les capteurs ou les télécommunications) ainsi que les systèmes d'imagerie.

Le cours suive quatre bloque principaux :

- formation mathématique : théorie de Fourier et les équations de la physique ;
- ondes planes électromagnétiques en espace libre et polarisation;
- Réponse matérielle aux ondes électromagnétiques : dispersion, réfraction, réflexion et ondes guidées ;
- Propagation spatiale 3D: diffraction et lentilles.

SIGNAL:

ce cours permet l'identification des problématiques qui peuvent relever du traitement du signal et fournit les éléments de base de ce domaine. Celui-ci constitue l'un des fondements des technologies numériques. Il présente les principes d'une démarche scientifique et technique nouvelle et spécifique, dont les applications industrielles et sociétales sont en pleine expansion. Les principales notions qui sont abordées :

- représentation des systèmes linéaires ;
- représentation temporelle et spectrale des signaux déterministes et aléatoires ;
- filtrage linéaire;

- numérisation des signaux et méthodes numériques de traitement du signal.

Modalité de contrôle des connaissances

Contrôle continu:

CC ondes: écrits (40 %) + TP (10%)

CC signal: écrits (50 %)

Bibliographie

Notes du cours, documents en format CDF.

Livre « De l'Optique électromagnétique à l'Interférométrie – Concepts et illustrations », M. Lequime et C. Amra, EDP Sciences,

Livre « Théorie du signal », Ph. Réfrégier, Masson (1993).

Equipe pédagogique

ONDES:

- * Miguel Alonso
- * Laurent Gallais
- * Nicolas Sandeau
- * Frédéric Lemarquis
- * Julien Fade
- * Luis Arturo Alemán Castañeda

SIGNAL:

- * Salah Bourennane
- * Caroline Fossati
- * Thierry Gaidon
- * Muriel Roche

Objectif de Développement Durable

Accès à la santé

Accès à une éducation de qualité

Villes et communautés durables

Lutte contre le changement climatique

Partenariats pour la réalisation des objectifs

Total des heures		78h
Nouvelles heures d'enseignement	Cours Magistral	34h
Nouvelles heures d'enseignement	Travaux Dirigés	24h
Nouvelles heures d'enseignement	Travaux Pratiques	12h
Nouvelles heures d'enseignement	Autres	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Miguel Alonso

■ miguel.alonso@centrale-marseille.fr

Langues et Cultures Internationales 6

Fn bref

Langue de cours: Anglais, Allemand, Espagnol, Français, Italien, Japonais, Chinois

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'enseignement des LCI s'inscrit dans la formation de citoyen ne s et ingénieur e s internationaux ales avertire s et responsables.

- * Mobiliser des savoirs et des savoir-faire linguistiques, conceptuels, culturels, communicationnels.
- * Acquérir des connaissances portant sur des pratiques, des événements et/ou phénomènes historiques, culturels, sociaux, économiques et politiques en faisant varier ses représentations.
- * Développer son esprit critique.

Description du programme

- * L'enseignement des LCI comprend deux enseignements distincts par semestre : Anglais (20h) et une autre langue (20h).
- * Attention : les élèves inscrit·e·s en Double Diplôme suivront 2 enseignements de FLE au S5 et S6 sauf si un niveau C1 est déjà validé en FLE (40h).
- * Sauf cas exceptionnel, les élèves ne pourront débuter une langue qu'au semestre 5 (Espagnol, Allemand, Chinois, Japonais, Italien). Ces élèves bénéficieront de 10 heures (italien, espagnol) ou 15 heures (allemand, chinois, japonais) de cours complémentaires de soutien.
- * Possibilité de débuter une LV3 selon les effectifs.

Compétences et connaissances scientifiques et techniques visées dans la discipline

La formation en Langues et Cultures est essentielle à l'identité de l'Ingénieur e Centralien ne qui devra être capable de communiquer et interagir à l'international avec des partenaires de langues et/ou cultures différentes, notamment dans un environnement professionnel.

* Langues à maitriser : Français, Anglais + une autre langue choisie pour les élèves français.

Modalité de contrôle des connaissances

* 2 langues (50% chacune de la moyenne). Minimum de 7/20 pour chaque langue.

Les 5 compétences du CECRL seront évaluées (Modalités précisées par l'enseignant·e).

- * Contrôle continu donc présence obligatoire : plus de 2 absences compromettront la validation du semestre.
 - * Ces 40 heures de cours en présentiel sont complétées par 10h de travail personnel (travail en autonomie, recherches, exercices...) par langue et par semestre.
 - * Les sessions 2 porteront sur les compétences non validées en 1° session et seront gérées individuellement par les enseignant·e·s.
 - * Pour être diplômé.e, l'élève devra valider un niveau d'anglais CECRL B2+ (Toeic 850 ou équivalent) et un niveau B2 en FLE (élèves en Double Diplôme) ou un niveau 3 Orthodidacte (Français langue maternelle.

Bibliographie

Bibliographie selon les cours choisis.

Equipe pédagogique

- * Anglais: P. Atkinson, J. Airey, V. Durbec (responsable UE), M. McKimmie, M. Kobliska
- * Espagnol: C. Enoch (responsable LV2), S. Duran, S. Carmoni, E. Munoz, V. Bertrand, Sofia Carmoni
- * Allemand: D. Ortelli van Sloun
- * FLE: V. Hamel
- * Chinois: J. Dong
- * Japonais: K. Yoshida,
- * Italien: S. Canzonieri

Objectif de Développement Durable

Egalité entre les sexes

Consommation et production responsables

Recours aux énergies renouvelables

Justice et paix

Réduction des inégalités

Total des heures

Nouvelles heures d'enseignement

Cours Magistral

40h 40h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Valérie Durbec

■ valerie.durbec@centrale-marseille.fr

Activités Physiques Sportives et Artistiques 6

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Élévation du niveau de compétence dans l'activité physique, sportive et artistique choisie (APSA)
- * Capacité à démontrer un fort engagement pour soi et pour son « groupe APSA »
- * Capacité à contribuer efficacement au bon fonctionnement de son groupe ou de son équipe
- * Capacité à gérer sa vie physique et entretenir son « capital santé »

Description du programme

Chaque élève choisit une APSA éligible pour le semestre.

Une participation hebdomadaire avec le groupe APSA choisi est attendue.

L'enseignement porte sur l'acquisition des procédures permettant la « montée du niveau de compétence sportive ou artistique » et sur la mise en œuvre effective et assidue de ces procédures.

Compétences et connaissances scientifiques et techniques visées dans la discipline

L'élève développe, lors des cours d'APSA, des ressources contribuant à la construction des cinq compétences du programme pédagogique de l'École centrale :

- élaboration de stratégies s'appuyant sur une analyse précise (enjeux, définition des objectifs, contexte, gestion des risques, évaluation de ses propres forces et faiblesses et de celles des partenaires et adversaires);
- prise de décisions en temps réel ou en temps différé à partir d'une perception affinée de l'évolution du contexte ;
- contribution à la construction d'un groupe ou d'une équipe au fonctionnement efficace en considérant et en respectant chacun de ses membres;
- capacité à agir de façon autonome en vue du développement de son propre niveau de compétence.

Modalité de contrôle des connaissances

Contrôle continu

Les élèves sont évalués sur leur assiduité, sur leur niveau d'engagement pour progresser et sur leur investissement pour un fonctionnement optimal du groupe.

Equipe pédagogique

Professeurs vacataires

Total des heures 15h Travaux Dirigés 15h

Nouvelles heures d'enseignement

Infos pratiques

Nom responsable UE

Responsable pédagogique

Jean Philippe Bayle

≥ jean_philippe.bayle@centrale-marseille.fr

Train'ing ou Compétences en alternance 96

Présentation

Objectifs d'apprentissage

Le contenu des semaines Train'ing est orienté vers la prise de conscience, l'apprentissage par l'action et la mise en situation des élèves pour leur permettre d'acquérir et consolider les compétences attendues de l'ingénieur centralien :

- * Comprendre les principes fondamentaux de la communication interpersonnelle
- * Comprendre la diversité des différents profils de communication et leurs caractéristiques
- * Expérimenter le travail en équipe
- * Prendre conscience des enjeux socio-environnementaux et des enjeux scientifiques

Les autres types d'Alternances (Entreprise, Recherche, Entrepreneuriat) permettent une immersion directe au sein de structures et d'équipes professionnalisantes

Le module « Compétences en alternance » a pour objectif de former ces alternants à une mission spécifique, soit en entreprise, dans un laboratoire ou en dispositif d'accompagnement à l'entrepreneuriat. L'objectif est de se familiariser à un milieu particulier, d'y acquérir les codes, la compréhension du fonctionnement de la structure, de faire émerger des solutions innovantes permettant l'avancée du projet.

Description du programme

Le Train'ing est un lieu dédié à l'intégration des compétences de l'ingénieur centralien articulé autour de 3 grands axes : intégration scientifique, ouverture sociétale et culturelle, compétences métier.\$

Concernant l'intégration scientifique, des activités scientifiques, en lien avec les composantes des compétences C1 (Innovation scientifique et technique) et C2 (Maîtrise de la complexité et des systèmes) sont proposées. Ces activités sont réparties sur 3 jours (24h. étudiant) autour d'un thème en articulant différents formats d'apprentissage (TP, expérience, visite, projet, ateliers, etc).

Les compétences métier regroupent des ateliers d'apprentissage et de pratique des *soft skills* (Agilité comportementale et Management d'équipe) ainsi que des semaines dédiées à des activités spécifiques du projet innovation (semaines d'idéation) évaluées par un jury.

Enfin, l'ouverture culturelle et sociétale permet aux étudiants une ouverture sur des disciplines telles que les Lettres, les Arts et différents champs des Sciences Humaines et Sociales afin de développer leur capacité à s'approprier d'autres langages, à favoriser leur curiosité et leur créativité.

D'autre part, ces actions de formation favorisent la prise de conscience des étudiants des enjeux sociétaux et environnementaux majeurs. Conformément aux axes stratégiques de l'établissement, les thématiques proposées s'appuient sur les ODD.

Pour les autres type d'alternance, après avoir trouvé une mission en entreprise, dans un laboratoire ou en entrepreneuriat, l'alternant doit tout mettre en place pour comprendre et appréhender l'environnement dans lequel il évolue, bien cerner sa mission, son rôle, bien identifier ses interlocuteurs. Il doit aussi faire des points réguliers avec ses encadrants afin de les tenir informés de sa mission et de son évolution. Le module se termine par deux évaluations, une évaluation de l'école via une soutenance et une évaluation du « tuteur métier ». Les points importants sont :

- * La formation (connaissances de base, aptitudes aux acquisitions, sens de l'analyse, sens de la synthèse, créativité et niveau d'innovation)
- * Le travail et les résultats (niveau de qualité, quantité, efficacité, atteinte des objectifs, respect des délais, prise en main du sujet, maîtrise du sujet)
- * La personnalité (esprit d'initiative, sociabilité, contacts, intérêts, motivation, sens des responsabilités, méthode et organisation, communication, ouverture d'esprit, jugement et réalisme)

Compétences et connaissances scientifiques et techniques visées dans la discipline

L'Alternance est le lieu privilégié d'intégration des compétences de l'ingénieur centralien. A ce titre elles sont toutes les cinq adressées dans les trois piliers des semaines Train'ing : l'intégration scientifique, l'ouverture culturelle et sociétale et les compétences métier et dans les autres dispositifs d'alternance.

Modalité de contrôle des connaissances

Pour l'alternance Train'ing, les différentes actions de formation des trois volets précités sont évaluées en contrôle continu. Chaque semaine donne lieu à une évaluation. L'offre d'ouverture culturelle et sociétale est évaluée à la fois par la présence à un nombre minimum d'actions défini en début d'année et par le rendu de rapports.

Pour les autres Compétences en alternance, une soutenance est organisée ainsi qu'un retour de la structure d'accueil.

Equipe pédagogique

- * E. Sarrouy
- * P. Denis
- * J. Bittebierre
- * L. Gallais
- * F. Schwander
- * A. Martinez

- * C. Jazzar
- * B. Chatelet
- * N. Sandeau
- * P. Guichardon
- * F. Anselmet
- * O. Boiron
- * T. Durt
- * F. Lemarquis
- * L. De Riggi
- * D. Hérault
- * V. Merval

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

▼ vincent.merval@centrale-marseille.fr

Projet innovation 96

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

À la fin de l'unité d'enseignements, les participants auront une compréhension des activités stratégiques et opérationnelles de la gestion de projet innovants :

Plus spécifiquement, les participants seront capables de :

- Explorer, Observer, Enquêter pour sélectionner les idées stratégiques qui répondront à un besoin/usage.
- Développer une stratégie de recherche, utiliser les outils adaptés pour trouver des informations fiables et pertinentes sur un sujet précis.
- Réaliser une revue de la littérature ou un état de l'art sur un sujet précis
- Réutiliser l'information dans le respect des exigences académiques et déontologiques (savoir citer et éviter le plagiat, utiliser les licences libres)
- Participer à une phase d'idéation et de structuration des idées pour aboutir à la définition d'une idée innovante et réaliste.
- Développer une charte de projet et le plan de projet associé.

- Définir les activités, les relations et la durée des activités afin de développer l'échéancier du projet.
- Gérer les ressources du projet (financières, matérielles et humaines), anticiper et corriger les risques du projet.
- Prototyper l'idée choisie et la confronter à un premier échantillon d'utilisateur/usager.
- Assurer le suivi du projet progrès, résultats et actions correctives.
- Conclure/terminer un projet et s'assurer du transfert adapté.

Description du programme

Cette UE comprend 3 modules:

- MOOC : 4 semaines de formation à distance sur 4 parties : Notions fondamentales du management et de l'organisation des projets, L'essentiel pour démarrer un projet, Outils avancés de gestion de projet, Gestion des risques + 2 modules de spécialisation au choix
- Recherche Information : Outils et méthodologie de recherche d'information, évaluation des sources, plagiat, règles de citation et rédaction d'une bibliographie. 4h d'autoformation en ligne et 2h de TP.
- Projet : Le projet débute en octobre et se clôt en juin. Lors de ce projet, les étudiants vont apprendre à maitriser les méthodes d'exploration, d'idéation et de créativité, la définition et cadrage du projet, la planification, l'organisation du projet, le travail en équipe, le pilotage du projet et sa clôture. Pour cela, de nombreux jalons devront être passés et de nombreux livrables devront être réalisés et validés par les tuteurs.

Compétences et connaissances scientifiques et techniques visées dans la discipline

C1 Innovation scientifique et technique : identification des besoins non-satisfaits, exploration et état de l'art de l'existant, proposition de solutions répondant à la problématique

C2 Maitrise de la complexité et des systèmes : complexité issue des solutions techniques, complexité issue des contraintes apportées par les parties prenantes, identification des problématiques et engagement de leurs résolutions

C3 Direction de programme : aspects techniques (analyse du besoin, conception, planification, et suivi de projet) aves aspects organisationnels

C4 Management des hommes : tous les aspects du management d'équipe

C5 Vision stratégique : définition d'une stratégie localisée et mise sous-contrôle de sa déclinaison opérationnelle

Modalité de contrôle des connaissances

Projet: Évaluations MOOC (4QCM + Examen Final), Recherche d'informations (1QCM + Dossier documentaire), Livrables Semaine Idéation (Pitch Video), Livrables intermédiaires (Fiche de synthèse), Rapport en fin de projet, Soutenance finale

Bibliographie

Project Management Institute (2009) Guide du corpus des connaissances en management de project Management Institute, 4ième édition

Management d'équipe : 7 leviers pour améliorer bien-être et efficacité au travail, Eyrolles, 2ième édition • Brun, J-P. (2013)

Le guide de l'innovation frugale - Les 6 principes clés pour faire mieux avec moins Les 6 principes clés pour faire mieux avec moins - Jaideep Prabhu, Navi Radjou

Open innovation - H. Chesbrough

Dealing with Darwin - G.A. Moore

Le Design Thinking au service de l'innovation responsable - Xavier Pavie, Corinne Jouanny, Daphné Carthy, François Verez

Equipe pédagogique

- * * Vincent Merval
 - * Benoit Dubost
 - * Steve Manny
 - * Florian Magnani
 - * Jean-Paul Delambre
- * Steve Manny

Objectif de Développement Durable

Accès à une éducation de qualité Accès à des emplois décents Bâtir une infrastructure résiliente

96h **Total des heures**

Nouvelles heures d'enseignement **Projets** 96h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

▼ vincent.merval@centrale-marseille.fr

Stage 1A ou Compétences en entreprise

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Découvrir une entreprise, son écosystème, ses contraintes et son fonctionnement.

Description du programme

Le stage de 1A est un stage de découverte de l'entreprise. Il doit permettre à l'élève de prendre contact avec le monde de l'entreprise dans des tâches d'exécution, sans être investi d'une quelconque autorité.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Le stage 1A est l'occasion pour l'élève d'enrichir son expérience professionnelle, de développer sa réflexion, de prendre conscience des contraintes socio- économiques auxquelles l'entreprise est soumise.

Modalité de contrôle des connaissances

Evaluation sur la base d'un rapport de stage corrigé par un enseignant de l'école et d'une fiche d'appréciation de l'entreprise.

Bibliographie

Site des stages : https://stages-emplois.centrale-marseille.fr/

Equipe pédagogique

- * Responsable des stages
- * Bureau Formations professionnalisantes
- * Service Relations & Partenariats Entreprise

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Muriel Roche

muriel.roche@centrale-marseille.fr

Approfondissements

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Mathématiques - Informatique - Economie	EC	54h			4
Chimie - Génie des Procédés	EC	24h	22h	8h	4
Mécanique - Physique	EC	36h	18h	2h	4

Mathématiques - Informatique - Economie

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- * Programmes des UE Mathématiques 1A, Informatique 1A et Economie-Gestion 1A (voir syllabus 1A)
- * Bases du langage Python

Objectifs d'apprentissage

- * Appliquer un domaine de mathématiques appliquées (Probabilités-Statistique, Eléments finis, Transport optimal) pour des applications
- * Concevoir un programme informatique en mettant en oeuvre les outils nécessaires : modélisation, algorithmes, environnement de programmation en Python
- * Comprendre des concepts avancés en économie autour de la notion de marché ou du comportement stratégique ou traiter des données en lien avec un problème d'économie.

Description du programme

L'approfondissement MIE est composé de trois temps, de quatre semaines chacun (18h de cours et 6h d'autonomie). Pour chaque temps, l'élève suit — au choix — une UE de Mathématiques, d'Informatique ou d'Economie. A l'issue des 3 temps il faudra cependant que chaque élève ait étudié au moins 2 matières différentes parmi les 3 proposées.

Choix d'un cours de Mathématiques, d'Informatique ou d'Economie par Temps

Temps 1	Temps 2	Temps 3
-	-	· ·

Mathématiques	Probabilités / statistiques	Approches variationnelles, éléments finis	Introduction à la théorie du transport optimal
Informatique	Algorithm design	Data driven programming	Python scientifique
Economie	Innovation et pouvoir de marché : monopole et rentes	Comportements stratégique : la théorie des jeux	Les inégalités : données et politiques économiques

Mathématiques

- 1. M1 : Probabilités et statistique
 - 1. Probabilité et espérance conditionnelle : définition, loi conditionnelle, propriétés, formule de Bayes, martingales
 - 2. Statistique inférentielle : estimation paramétrique (maximum de vraisemblance, méthode des moments, modèle régulier et information de Fisher, intervalle de confiance), tests paramétriques (test du rapport des maxima de vraisemblances) et non-paramétriques (chi-2).
- 2. M2: Approches variationnelles, éléments finis
 - 1. Distributions : définition, convergence, dérivée
 - 2. Espace de Hilbert, espaces de Sobolev, inégalités (Cauchy-Schwarz, Minkowski), formule de Green, semi-norme
 - 3. Méthode variationnelle : théorème de Lax-Milgram, méthode de Galerkin (définition, convergence et ordre), théorème de convergence de l'approximation interne
 - 4. Eléments finis : définition, espace d'approximation, convergences de l'approximation locale et de l'approximation globale, théorème de convergence des éléménts finis de Lagrange
- 3. M3: Introduction à la théorie du transport optimal
 - 1. Formulation de Monge, Formulation de Kantorovitch,
 - 2. Dualité de Kantorovitch, fonctions c-concaves, applications en économie: matching equilibrium
 - 3. Distance de Wasserstein, distance de Wasserstein généralisée (unbalanced optimal transport)
 - 4. Aspects computationnels: algorithme de Sinkhorn, régularisation entropique, Formulation dynamique à la Benamou-Brenier

Informatique

- 1. I1: Algorithm design
 - 1. Algorithme divide & conquer
 - 2. Problème de l'alignement de séguences : étude de l'alignement de séguences, code alignement de séguences
 - 3. Programmation dynamique et NP-complétude
 - 4. Algorithmes gloutons : principes et mise en oeuvre
 - 5. Problèmes d'énumération : stratégies branch-and-bound et backtracking
- 2. I2: Data driven programming
 - 1. Programmation événementielle et objets persistants. Python objet. Principe CRUD. Patrons de conception MVC.
 - 2. Gestionnaires de persistance: ORM, DAO. serveurs web. HTML/CSS. Django, pony ORM, Django ORM.
- 3. I3: Python scientifique
 - 1. Manipulation et analyse des données en Python : bibliothèques Numpy et Scipy
 - 2. Représentation graphique : bibliothèque Matplotlib
 - 3. Manipulations et représentation de dataframe : bibliothèques Pandas et Seaborn
 - 4. Traitement d'images : Scikit-image

Economie

- 1. E1 : Innovation et pouvoir de marché : monopole et rentes
 - 1. Marché, structures de marché, cas concurrentiel
 - 2. Le monopole : monopole simple, production d'un bien durable, discrimination par les prix, sélection des produits
 - 3. Interactions stratégiques: l'oligopole, compétition à la Cournot, compétition à la Bertrand, stratégies d'affaires
- 2. E2 : Comportements stratégiques: la théorie des jeux
 - 1. Stratégie dominée et EISSD (élimination itérée des stratégies strictement dominées)
 - 2. Equilibre de Nash: définition, meilleures réponses, connexion EISSD-Nash
 - 3. Stratégies mixtes : définition, recherche d'équilibres mixtes, théorème de Nash, interprétation des équilibres de Nash mixtes
 - 4. Jeux à espaces d'action continus
 - 5. Jeux séquentiels
 - 6. Matching
- 3. E3: Economie: données et politiques économiques
 - 1. Les inégalités en économie : définition, mesure, facteurs d'inégalités
 - 2. Les politiques de lutte contre les inégalités
 - 3. L'évaluation des politiques publiques : méthode d'évaluation expérimentale et quasi-expérimentale

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * M1 : Modéliser une expérience statistique pour un échantillon i.i.d. et mettre en oeuvre des techniques standards d'estimation ponctuelle et par intervalle et de test.
- * M2 : Ecrire et analyser une formulation variationnelle pour une EDP. La mettre en oeuvre dans un logiciel d'éléments finis.
- * M3: Formuler le problème de transport optimal et calculer des distances de Wasserstein.
- * 11 : Comprendre les grandes catégories d'algorithmes et savoir les implémenter.
- * 12 : Mettre en oeuvre la programmation événementielle sous Python et comprendre la notion de persistance
- * 13 : Programmer en Python avec les bibliothèques Numpy, Scipy, Matplotlib, Pandas, Seaborn et Scikit-image.
- * E1 : Savoir identifier les différents types de marché, comprendre les notions de monopole et d'oligopole.
- * E2 : Savoir classer les stratégies et comprendre la notion d'équilibre de Nash.
- * E3 : Comprendre la notion d'inégalité et mettre en oeuvre des outils pour évaluer les politiques publiques visant à les réduire.

Modalité de contrôle des connaissances

Contrôle continu

Bibliographie

Une bibliographie sera proposée au début de chaque cours composant l'Approfondissement MIE.

Equipe pédagogique

1. Mathématiques

- 1. M1: Christophe Pouet, Mitra Fouladirad, Frédéric Schwander
- 2. M2: Guillaume Chiavassa
- 3. M3: Magali Tournus

2. Informatique

- 1. I1 : François Brucker, Pascal Préa
- 2. 12 : Emmanuel Daucé, Manon Philibert
- 3. 13: Muriel Roche, Manon Philibert

3. Economie

- 1. E1: Nicolas Clootens, Santiago Lopez-Cantor
- 2. E2: Nicolas Fournier (AMU), Hajare El Hadri, Santiago Lopez-Cantor, Ayoub Salih
- 3. E3: Hajare El Hadri

Objectif de Développement Durable

Justice et paix

Consommation et production responsables

Lutte contre le changement climatique

Total des heures72hNouvelles heures d'enseignementCours Magistral54hNouvelles heures d'enseignementApprentissage en Autonomie18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Christophe Pouet

christophe.pouet@centrale-marseille.fr

Chimie - Génie des Procédés

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Connaissances de base en chimie, génie des procédés et mécanique des fluides.

Objectifs d'apprentissage

Chimie:

- Connaitre les principes de contrôle cinétique ou thermodynamique, contrôle de charge, orbitélaire ou stérique sous-jacents aux réactions chimiques
- Connaître les propriétés et la réactivité du benzène et de ses dérivés. Connaître les propriétés et la réactivité de la fonction carbonyle, fonction chimique très versatile de la chimie organique
- Connaitre la structure électronique des complexes organométalliques, la nature de la liaison métal ligand et les mécanismes de substitution de ligands – Addition oxydante – Élimination réductrice – Insertions et éliminations

Génie des procédés :

- Acquérir des connaissances en transfert de matière pour un milieu continu et au voisinage d'une interface

– Appliquer ces connaissances à l'extraction liquide-liquide sans miscibilité partielle pour aller jusqu'au dimensionnement d'une batterie de mélangeurs-décanteurs, d'une colonne à plateaux et d'une colonne à garnissage

Description du programme

Chimie - Réactivité organique et organométallique :

- * 1e partie : Addition électrophile sur alcène le benzène et ses dérivés : aromaticité, résonance réactivité du benzène et ses dérivés : addition électrophile aromatique (halogénation, nitration, sulfonation alkylation de Friedel et Crafts) poly substitution : régiosélectivité.
- * 2e partie : structure et propriétés de la fonction carbonyle préparation des dérivés carbonylés : oxydation des alcools, transposition réactivité des dérivés carbonylés : attaque nucléophile par l'eau, les alcools, les amines, réduction par les hydrures et les organomagnésiens et organolithiens, les ylures (réaction de Wittig) oxydation des cétones énols et énolates : C-alkylation et O-alkylation, aldolisation.
- * 3e partie : chimie organométallique et catalyse, les complexes organométalliques : structure électronique des complexes la liaison métal-ligand les mécanismes réactionnels substitution de ligands addition oxydante élimination réductrice insertions et éliminations réactions sur les ligands coordinés principes généraux de la catalyse : hydrogénation hydroformylation.

Génie des Procédés :

- * Transfert de matière : Transfert de matière en milieu continu, mécanismes : diffusion et convection. Bilan local : équation de continuité
- * Transfert de matière à une interface : modèle du film, coefficients de transfert, analyse dimensionnelle et principaux nombre adimensionnels, analogie
- * L'extraction liquide-liquide : Introduction aux méthodes séparatives, l'étage théorique, la batterie de mélangeurs-décanteurs à courant croisé, la colonne à plateaux, la colonne à garnissage

Compétences et connaissances scientifiques et techniques visées dans la discipline

Chimie:

- * Savoir aborder la réaction chimique en terme de contrôles (cinétique ou thermodynamique, contrôle de charge, orbitalaire ou stérique).
- * Prédire la sélectivité et la stéréochimie des produits formés.
- * Contrôler la sélectivité et la stéréochimie des produits formés.
- * Prévoir la réactivité d'un complexe organométallique
- * Prédire ses modifications structurale et électronique tout au long d'un cycle catalytique au contact du milieu réactionnel Génie des procédés :
- * Savoir aborder un problème lié au transfert de matière.
- * Distinguer les différents mécanismes de transfert de matière et formuler leur mise en équations associées.
- * Prédire les performances d'une opération d'extraction liquide-liquide.

* Prédire les dimensions et les conditions de fonctionnement d'une unité d'extraction liquide-liquide.

	A 1	11. 7	1		1	· ·	
Ν	/loda	lite (de d	control	e des	s connaissar	nces

DS chimie (2/3) - GP (1/3): 50 %

CC (TD + TP + TA) chimie (2/3) - (TD + TA) GP (1/3): 50 %

Bibliographie

Ressources en ligne sur le portail pédagogique de l'École centrale.

Ouvrages (centre de documentation).

Equipe pédagogique	
Chimie:	
- Bastien Chatelet	
– Didier Nuel	
– Laurent Giordano	
– Alexandre Martinez	
– Innocenzo De Riggi	
- Cédric Colomban	
Génie des procédés :	
– Pierrette Guichardon	

- Pascal Denis
- Nelson Ibaseta
- Audrey Soric
- Jiupeng Du

Objectif de Développement Durable

Consommation et production responsables

Total des heures		72h
Nouvelles heures d'enseignement	Cours Magistral	24h
Nouvelles heures d'enseignement	Travaux Dirigés	22h
Nouvelles heures d'enseignement	Travaux Pratiques	8h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Didier Nuel

☑ didier.nuel@centrale-marseille.fr

Responsable pédagogique

Pierrette Guichardon

■ pierrette.guichardon@centrale-marseille.fr

Responsable pédagogique

Innocenzo de Riggi

■ innocenzo.de-riggi@centrale-marseille.fr

Mécanique - Physique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- UE 1A/

 Mécanique : bases de la MMC
- UE 1A/ Physique: parties physique statistique et physique quantique.
- UE 1A/C Ondes et Signal: équations de Maxwell, d'ondes et de Helmholtz, propagation paraxiale, traitement du signal.
- · Bases de la théorie des groupes.

Objectifs d'apprentissage

- S'appuyer sur le programme de 1ère année pour découvrir les notions fondamentales
- -- en dynamique, pour la mécanique.
- -- sur la formation des images et la transmission/obtention d'information en utilisant la lumière, pour l'optique.
- -- sur le concept de symétrie et sur le calcul variationnel en lien avec les formalismes de Lagrange et Hamilton, pour la physique quantique.
- -- sur les fluctuations et les phénomènes critiques pour la physique statistique.
- · Savoir mettre un problème en équations à l'aide de différents outils.

0 ' 1 1 1 (11 / 1	/ · · · ·	1 1 1	1 1.00	115 (17
 Savoir calculer de fa 	icon theoridile oli	numeriane l	les sollitions i	des differents	nrohlemes formules
ouvoir outourer ac re	içon inconque ou	Harrich que i	ico ociationo i	aco anicicito	problemes formates.

•	Savoir	analyse	r les	solutions	obtenues
---	--------	---------	-------	-----------	----------

Description du programme

Le programme se scinde en trois parties de volumes équivalents : mécanique, optique et physique (quantique et statistique).

$N A \cap \cap \cap$	nialio	
IVIECE	nique .	

- Outils de mise en équation :
- -- Théorème des puissances virtuelles et ouverture à la méthode des éléments finis
- -- Principe d'Hamilton et équations de Lagrange
- Résolution et analyse :
- -- Régimes transitoires et stationnaires
- -- Modes
- -- Stabilité et bifurcations

Optique:

- Méthodes matricielles pour les rayons et les ondes, formule de Collins et espace des phases
- · Systèmes de formation des images, afocaux et transformeurs de Fourier; aberrations et résolution optique
- · Guides d'ondes (métalliques, diélectriques et à gradient d'indice)
- · Lasers : émission stimulée, cohérence, cavités, modes, impulsions courtes, amplification des chirps

Physique quantique:

- Symétries infinitésimales, algèbre de Lie des générateurs : groupe de Lorentz, transformations spinoriales du groupe SU2 vues comme une représentation du groupe des rotations dans R3
- · Matrice de densité pour les qubits (vecteur de Bloch), cohérence et pureté d'un état quantique, liens avec l'optique
- · Principe de moindre action

Physique statistique:

- Théorie des distributions et applications en physique
- · Champs aléatoires appliqués à la physique
- Fluctuations d'équilibre et transitions de phase

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Connaître les liens et similitudes entre différentes disciplines
- · Savoir mettre en équations un grand nombre de systèmes complexes
- · Savoir résoudre un système d'équations de façon analytique
- · Connaître les fondements des méthodes numériques de résolution des systèmes rencontrés
- · Savoir analyser les solutions obtenues
- Pouvoir résoudre des problèmes simples tels que vus en cours ou similaires
- · Approfondir des conceptions de base telles que le principe de symétrie

Modalité de contrôle des connaissances

- CC1 : écrit (42 %)
- CC2: écrit (42%)
- CC3: mini-projet en optique (8 %)
- CC4: mini-tests en début de TD de mécanique (8 %)

Bibliographie

- · Supports de cours en PDF
- Physique:
- -- D. Griffith, Introduction to Quantum Mechanics, Wiley (disponible en version électronique et papier au centre de documentation) plus notes sur Doodle

- -- Ph. Réfrégier, Noise theory and application to physics, Springer, 2003
- -- J.M. Yeomans, Statistical Mechanics of Phase Transitions, Oxford Science Publications, 1992

Equipe pédagogique

Optique: Miguel Alonso, Luis Arturo Aleman Castaneda, Frédéric Lemarquis, Laurent Gallais-During

Physique quantique : Thomas Durt et Marc Jaeger

Physique statistique : Philippe Réfrégier, Georges Bérardi, Muriel Roche, Julien Fade

Mécanique : Emmanuelle Sarrouy, Bruno Cochelin, Régis Cottereau, Thierry Désoyer, Cédric Maury

Total des heures		72h
CM	Cours Magistral	36h
TD	Travaux Dirigés	18h
TP	Travaux Pratiques	2h
AA	Apprentissage en Autonomie	14h
Autres (CC)	Autres	2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

manuelle.sarrouy@centrale-marseille.fr

Electronique Energie Electrique Automatique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Résolution d'équations différentielles, séries et transformation de Fourier, transformation de Laplace, algèbre de Boole, logique combinatoire, théorie de l'échantillonnage.

Objectifs d'apprentissage

L'enseignement de Tronc Commun E3A permet d'acquérir et de maîtriser des méthodes d'analyse et de synthèse de systèmes électroniques au sens large, permettant aux étudiants d'appréhender des problèmes complexes et transdisciplinaires.

En particulier, l'étudiant sera capable :

- de maîtriser les concepts permettant d'établir un cahier des charges et faire la synthèse d'un montage en utilisant les outils appropriés.
- de comprendre, d'analyser, puis de concevoir un système de filtrage et d'amplification d'un signal analogique réel, source ou capteur.
- de maîtriser les outils de base de l'Automatique, d'être capable d'associer le comportement temporel d'un système à un modèle.
- de maîtriser les circuits propres à l'électronique numérique, et saura mettre en pratique les méthodes de synthèse de montages à fonctionnement séquentiel à l'aide de mémoires, machines à états finis, et unités Arithmétique et Logique.

- de connaître l'architecture d'un système de base et de présenter des éléments d'un système simple à base de micro-processeur.
- d'évaluer les critères de choix d'un système de conversion N/A et A/N selon le type d'application visée.
- d'acquérir les bases nécessaires à la compréhension des systèmes de conversion d'énergie électrique en maîtrisant les différentes fonctions constitutives de ces systèmes.

Description du programme

-1	ectronia			
⊢ 1	ACTIONIO	II IA Ar	חשחובי	шa.
\Box	CCHOING	uc ai	Iaiouic	ıuc.

- Systèmes linéaires et signaux.
- Filtrage, représentation.
- Impédances d'entrées/sortie/gain.
- -Notion de quadripôles, paramétrage, et associations.
- Amplificateurs opérationnels réels.

Automatique des systèmes linéaires :

- Introduction au positionnement de l'automatique dans le métier d'ingénieur.
- Modélisation des systèmes : modèle de connaissance, modèle de conduite pour les systèmes d'ordre supérieur à deux, identification.
- Analyse du comportement des systèmes bouclés.
- -Etude de la stabilité : Méthode Algébrique, Lieu d'Evans, Méthode fréquentielle.
- Précision.
- Synthèse d'une commande à partir d'un cahier des charges.

Électronique numérique:

- Numérique et électronique embarquée.
- Caractéristiques comparées des signaux analogiques et numériques.
- Conception de circuits à base d'éléments de logique combinatoire, de logique séquentielle et de machine à états.

-	Memo	ıres et	micro-	processeurs.

_	Convertisseurs	Δ/NI	et N/	Δ

Énergie électrique:

- Circuits électriques monophasés et triphasés, équilibrés et déséquilibrés.
- -Fonctionnement et mécanismes caractéristiques des composants de l'électronique de puissance en commutation.
- Systèmes de conversion d'énergie électrique.

Microcontrôleurs:

- Architecteur d'un système de base.
- Programmation / jeu d'instructions.
- Micro-processeurs, microcontrôleurs et DSP.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- la capacité pour un étudiant à identifier les éléments nécessaires à la compréhension des systèmes complexes électroniques (analogiques et/ou numériques) puis à en appréhender toutes les dimensions scientifiques et techniques.
- la maîtrise des méthodes et des outils de base d'analyse et de synthèse de systèmes électroniques numériques
- la maîtrise des méthodes et des outils de base d'analyse et de synthèse de la commande de systèmes asservis linéaires.
- la capacité à comprendre les principes élémentaires et la finalité de l'électronique de puissance et des convertisseurs AC/DC.
- la capacité à appréhender toutes les dimensions scientifiques et techniques de tous les éléments d'une chaîne de conversion d'énergie électrique à partir d'un cahier des charges.

Modalité de contrôle des connaissances

L'évaluation de l'UE E3A est faite par contrôle continu, sous la forme de devoirs surveillés sur table et/ou en ligne (en autonomie) et/ou oral pendant les séances de TD. Le nombre de contrôles continus est au maximum 10. Les TPs (training) sont également évalués et participent de l'évaluation finale. La note finale de l'évaluation est une moyenne pondérée des notes aux différentes évaluations.

Bibliographie

Schubert,Kim, "Fundamentals of electronics", Morgan & Claypool publishers, 2013. Floyd, Buchla, « Electronics Fundamentals Circuits, Devices, and Applications », 8th edition, 2014, Pearson. Floyd, « Digital Fundamentals », 11th edition, Pearson, 2015. Larminat, « Commande des systèmes linéaires », Hermes Science publication,1996. Granjon, « Automatique 3ème édition », 2015, Dunod

Equipe pédagogique

Lætitia ABEL-TIBERINI, Nicolas BERTAUX, Mohamed BOUSSAK, Thierry GAIDON, Guillaume GRATON, Alain KILIDJIAN, Fabien LEMARCHAND + vacataires

Objectif de Développement Durable

Recours aux énergies renouvelables

Villes et communautés durables

Consommation et production responsables

Total des heures		72h
E3A-CM	Cours Magistral	24h
E3A-TD	Travaux Dirigés	30h
E3A-Autonomie	Apprentissage en Autonomie	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Lemarchand

■ fabien.lemarchand@centrale-marseille.fr

Sciences Humaines et Sociales

Fn bref

> Langue de cours: Français

Présentation

Prérequis

non

Objectifs d'apprentissage

- * Comprendre les modes de raisonnement et de conceptualisation des sciences humaines et sociales, principalement la sociologie et la psychologie.
- * Réaliser une enquête de terrain (entretiens, observations)
- * Analyser les transformations contemporaines du travail et des organisations.
- * Mettre en oeuvre une démarche rigoureuse d'analyse des situations de travail, en distinguant les étapes de description, d'explication et de préconisation
- * Comprendre les mécanismes sociaux et psychologiques, individuels et collectifs, de production des discriminations, du racisme, de l'antisémitisme.

Description du programme

Cette UE propose une initiation aux sciences humaines et sociales, principalement la sociologie et la psychologie.

Elle présente la **démarche scientifique** propre aux SHS (problématisation, posture d'enquête, conceptualisation) et quelques **concepts fondamentaux** pour comprendre les comportements individuels et collectifs (socialisation, intégration sociale,

régulation, discrimination, stéréotype, influence sociale...), les structures sociales et leurs dynamiques (modernité, rationalisation, désenchantement du monde, individualisation...). La thématique principale porte sur les **transformations contemporaines du travail et des organisations.** Elle conduit à interroger les rôles et identités professionnelles des ingénieur.e.s dans un monde en mutation, à discuter les innovations organisationnelles au regard des fondements historiques du management, à analyser les évolutions des conditions de travail et les problématiques de santé mentale au travail (risques psycho-sociaux).

Enfin, une sensibilisation aux **mécanismes psychologiques et sociaux** de production des stéréotypes, des discriminations, du racisme et de l'antisémitisme est proposée.

Les modalités pédagogiques alternent cours magistraux, TD, enquête de terrain, études de cas et visite. Elles donnent une large place au travail en autonomie et aux travaux de groupe.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Construire et formuler une problématique de recherche en sciences sociales
- * Concevoir un dispositif d'enquête pour répondre à une problématique
- * Conduire un entretien sociologique ou une observation
- * Analyser des données qualitatives et quantitatives en sciences sociales.
- * Présenter les résultats d'une recherche
- * Caractériser une organisation ou un contexte de travail
- * Analyser une situation de travail dans ses dimensions organisationnelles, collectives et individuelles
- * Formuler des préconisations d'accompagnement des transformations organisationnelles favorisant la qualité de vie au travail.
- * Comprendre les mécanismes psychologiques et sociaux de production des stéréotypes et leurs effets.
- * Identifier les situations de discrimination.
- * Animer et réguler une équipe de travail : s'organiser, se positionner dans un groupe, réguler la conflictualité, communiquer.

Modalité de contrôle des connaissances

100% contrôle continu

Travaux réguliers à mener individuellement ou en équipe de 5 étudiant.e.s (écrit, oral).

Bibliographie

cf moodle et supports de cours

Equipe pédagogique

Enseignants titulaires:

Florian Magnani

Laetitia Piet

Enseignants vacataires :

Nicolas Beltou

Yohann Desbois

Olivia Foli

Geoffroy Gonzalez

Claudie Riberolles

Objectif de Développement Durable

Egalité entre les sexes

Réduction des inégalités

Partenariats pour la réalisation des objectifs

Accès à des emplois décents

Justice et paix

Total des heures		48h
Cours magistral	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Travaux Pratiques	6h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laetitia Piet

■ laetitia.piet@centrale-marseille.fr

Langues et Cultures Internationales 7

Fn bref

Langue de cours: Anglais, Espagnol, Allemand, Chinois, Japonais, Italien

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'enseignement des LCI s'inscrit dans la formation de citoyen ne s et ingénieur e s internationaux ales avertire s et responsables.

- * Mobiliser des savoirs et des savoir-faire linguistiques, conceptuels, culturels, communicationnels.
- * Acquérir des connaissances portant sur des pratiques, des événements et/ou phénomènes historiques, culturels, sociaux, économiques et politiques en faisant varier ses représentations.
- * Développer son esprit critique.

Description du programme

- * L'enseignement des LCI comprend deux enseignements distincts par semestre : Anglais (20h) et une autre langue (20h).
- * Attention : les élèves inscrit·e·s en Double Diplôme suivront 2 enseignements de FLE au S7 et S8 s'ils rejoignent l'ECM au S7 sauf si un niveau C1 est déjà validé en FLE (40h).
- * Possibilité de débuter une LV3 selon les effectifs.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * La formation en Langues et Cultures est essentielle à l'identité de l'Ingénieur·e Centralien·ne qui devra être capable de communiquer et interagir à l'international avec des partenaires de langues et/ou cultures différentes, notamment dans un environnement professionnel.
- * Langues à maitriser : Français, Anglais + une autre langue choisie pour les élèves français.

Modalité de contrôle des connaissances

* 2 langues (50% chacune de la moyenne). Minimum de 7/20 pour chaque langue.

Les 5 compétences du CECRL seront évaluées (Modalités précisées par l'enseignant·e).

- * Contrôle continu donc présence obligatoire : plus de 2 absences compromettront la validation du semestre.
- * Ces 40 heures de cours en présentiel sont complétées par 10h de travail personnel (travail en autonomie, recherches, exercices...) par langue et par semestre.
- * Les sessions 2 porteront sur les compétences non validées en 1° session et seront gérées individuellement par les enseignant es.
- * Pour être diplômé.e, l'élève devra valider un niveau d'anglais CECRL B2+ (Toeic 850 ou équivalent) et un niveau B2 en FLE (élèves en Double Diplôme) ou un niveau 3 Orthodidacte Français langue maternelle.

Bibliographie

Selon les cours choisis.

Equipe pédagogique

- * Anglais: P. Atkinson, J. Airey, V. Durbec (responsable UE), M. McKimmie, M. Kobliska
- * Espagnol: C. Enoch (responsable LV2), S. Duran, S. Carmoni, E. Munoz, V. Bertrand, Sofia Carmoni
- * Allemand : D. Ortelli van Sloun
- * FLE: V. Hamel
- * Chinois: J. Dong
- * Japonais: K. Yoshida,
- * Italien: S. Canzonieri

Objectif de Développement Durable

Egalité entre les sexes

Consommation et production responsables

Recours aux énergies renouvelables

Justice et paix

Réduction des inégalités

40h

Travaux Dirigés

40h

Infos pratiques

Nouvelles heures d'enseignement

Nom responsable UE

Responsable pédagogique

Valérie Durbec

Total des heures

■ valerie.durbec@centrale-marseille.fr

Activités Physiques Sportives et Artistiques 7

Présentation

Total des heures 15h

Nouvelles heures d'enseignement Autres 15h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Jean Philippe Bayle

≥ jean_philippe.bayle@centrale-marseille.fr

Projet thématique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

UE Projet Innovation

Objectifs d'apprentissage

À la fin de l'unité d'enseignements, les participants auront une compréhension des activités stratégiques et opérationnelles de la gestion de projet innovants :

Plus spécifiquement, les participants seront capables de :

- Développer une charte de projet et le plan de projet associé (cadrage)
- Définir un plan de management, qui détaille les modalités d'organisation et de communication avec l'ensemble des parties prenantes du projet (cadrage)
- Définir les activités, les relations et la durée des activités afin de développer l'échéancier du projet (planification)
- Gérer les ressources du projet (financières, matérielles et humaines), anticiper et corriger les risques du projet
- Assurer le suivi du projet progrès, résultats et actions correctives
- Conclure/terminer un projet et s'assurer du transfert adapté

Description du programme

Cette UE comprend 1 module:

Projet: Le projet débute en septembre et se cloture en janvier. Lors de ce projet, les étudiants vont apprendre à maitriser la définition et cadrage du projet, la planification, l'organisation du projet, le pilotage du projet et sa cloture. En complément de ce qu'ils auront acquis dans l'UE Projet Innovation, ils acquerront une maitrise plus fine de la dimension humaine de la gestion de projet (travail en équipe, gestion de conflit, communication, organisation, comportements). Pour cela, de nombreux jalons devront être passés et de nombreux livrables devront être réalisés et validés par les tuteurs pendant les phases de Formulation, Cadrage, Planification, Execution, Transfert.

L'évaluation des compétences se fera au travers des différentes phases du projet et des livrables associés :

- Formulation : Fiche de présentation de projet V0, Rôles et responsabilités
- Cadrage: Plan de Management, Fiche contractuelle, Plan de communication, Mécanismes de fonctionnement
- Planification: WBS/OBS, Planning, Analyse des risques
- Exécution et Maquettage : Tableau de bord, Revue de projet, Carnet de bord
- Transfert : Livrables du projet, Rapport, Soutenance

Chaque phase sera clôturée par la passation d'un jalon : soit production écrite, soit présentation orale.

Les tuteurs seront aussi présents ainsi que les jurys pour valider l'acquisition des compétences précédemment citées.

Compétences et connaissances scientifiques et techniques visées dans la discipline

C1 Innovation scientifique et technique : identification des besoins, exploration et état de l'art de l'existant, proposition de solutions répondant à la problématique.

C2 Maitrise de la complexité et des systèmes : complexité issue des solutions techniques, complexité issue des contraintes apportées, identification des problématiques et de leurs résolutions.

C3 Direction de programme : aspects techniques (analyse du besoin, conception et suivi de projet) avec aspects organisationnels (parties prenantes, communication).

C4 Management des hommes : tous les aspects du management d'équipe (role de chef de projet, de membres, et coordination des acteurs).

C5 Vision stratégique : définition d'une stratégie localisée et mise sous-controle de sa déclinaison opérationnelle.

Modalité de contrôle des connaissances

Contrôle continu:

Interactions avec vos tuteurs (10%)

Soutenance à mi-parcours (10%)

Livrables intermédiaires (10%)

Livrables finaux (25%)

Rapport en fin de projet (20%)

Soutenance finale (25%)

Bibliographie

Project Management Institute (2009) Guide du corpus des connaissances en management de projet, Project Management Institute, 4ième édition

• Brun, J-P. (2013) Management d'équipe : 7 leviers pour améliorer bien-être et efficacité au travail, Eyrolles, 2ième édition

Equipe pédagogique

F.Magnani, A.Soric

Objectif de Développement Durable

Accès à une éducation de qualité

Accès à des emplois décents

production responsables

Total des heures 48h

Nouvelles heures d'enseignement Projets 48h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Florian Magnani

■ florian.magnani@centrale-marseille.fr

Train'ing ou Compétences en alternance 7

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Alternance Train'ing : Le Train'ing est un lieu dédié à l'intégration des compétences de l'ingénieur centralien articulé autour de 3 grands axes : intégration scientifique, ouverture sociétale et culturelle, compétences métier.

Parmi les objectifs principaux du Train'ing:

- * Comprendre les différents types de leadership.
- * Comprendre les enjeux du management d'équipe.
- * Prendre conscience des enjeux sociétaux et des défis scientifiques.
- * Capitaliser sur l'immersion professionnelle (santé et sécurité au travail, compétences acquises en milieu professionnel...)
- * Alternance Entreprise, Recherche, Entrepreneuriat: Le module « Compétences en alternance » a pour objectif de former les alternants à une mission spécifique, soit en entreprise, dans un laboratoire, en entrepreneuriat ou de type associatif. Les alternants sont suivis pendant les périodes d'alternance par un « tuteur métier » (entreprise, laboratoire, entrepreneuriat, associatif) et un « tuteur école ». L'objectif est de se familiariser à un milieu particulier, d'y acquérir les codes, la compréhension du fonctionnement de la structure, de faire émerger des solutions innovantes permettant l'avancée du projet.

Description du programme

Alternance Train'ing: Concernant l'intégration scientifique, des activités scientifiques, en lien avec les composantes des compétences C1 (*Innovation scientifique et technique*) et C2 (*Maîtrise de la complexité et des systèmes*) sont proposées. Ces activités sont réparties sur 3 jours (24h.étudiant) autour d'un thème en articulant différents formats d'apprentissage (TP, expérience, visite, projet, ateliers, etc).

Les compétences métier regroupent des ateliers d'apprentissage et de pratique des soft skills (Conduite du Changement)

Enfin, l'ouverture culturelle et sociétale permet aux étudiants une ouverture sur des disciplines telles que les Lettres, les Arts et différents champs des Sciences Humaines et Sociales afin de développer leur capacité à s'approprier d'autres langages, à favoriser leur curiosité et leur créativité. D'autre part, ces actions de formation favorisent la prise de conscience des étudiants des enjeux sociétaux et environnementaux majeurs. Conformément aux axes stratégiques de l'établissement, les thématiques proposées s'appuient sur les ODD.

Ces différents volets sont abordés par le biais de choix d'électifs répartis sur le semestre.

Alternance Entreprise, Recherche, Entrepreneuriat: Après avoir trouvé une mission en entreprise, dans un laboratoire, en entrepreneuriat, l'alternant doit tout mettre en place pour comprendre et appréhender l'environnement dans lequel il évolue, bien cerner sa mission, son rôle, bien identifier ses interlocuteurs.

Les points importants sont :

- La formation (connaissances de base, aptitudes aux acquisitions, sens de l'analyse, sens de la synthèse, créativité et niveau d'innovation)
- Le travail et les résultats (niveau de qualité, quantité, efficacité, atteinte des objectifs, respect des délais, prise en main du sujet, maîtrise du sujet)
- La personnalité (esprit d'initiative, sociabilité, contacts, intérêts, motivation, sens des responsabilités, méthode et organisation, communication, ouverture d'esprit, jugement et réalisme)

Compétences et connaissances scientifiques et techniques visées dans la discipline

Les cinq compétences centraliennes sont adressées dans les périodes d'Alternance.

- * C1 (Innovation scientifique et technique)
- * C2 (Maîtrise de la complexité et des systèmes)
- * C3 (Direction de programme)
- * C4 (Management des Hommes)
- * C5 (Vision stratégique)

Modalité de contrôle des connaissances

Alternance Train'ing: Les différentes actions de formation des trois volets précités sont évaluées en contrôle continu. Chaque semaine donne lieu à une évaluation. L'offre d'ouverture culturelle et sociétale est évaluée à la fois par la présence à un nombre minimum d'actions défini en début d'année et par le rendu de rapports.

Alternance Entreprise, Recherche, Entrepreneuriat:

Pour les alternants, l'évaluation se base sur plusieurs éléments :

- * Rapport
- * Poster
- * Évaluation Entreprise ou Laboratoire ou appréciation Coach (cas des alternants Entrepreneuriat)
- Séances CAF
- * Evenements Culture & Société
- * Change Management

Dans les cas particulier des alternants Entrepreneuriat, la présence aux Conférences écosystème et Rdv des entrep' est également prise en compte

Equipe pédagogique

B. Chatelet, L. Gallais, P. Guichardon, J. Du, D. Nuel, P. Denis, J.-M. Rossi, A. Khalighi, S. Bourennane, C. Fossati, F. Perrin, G. Graton, C. Jucquin, V. Merval

Objectif de Développement Durable

Accès à la santé

Consommation et production responsables

Egalité entre les sexes

Lutte contre le changement climatique

Recours aux énergies renouvelables

Total des heures		104h
Nouvelles heures d'enseignement	Travaux Dirigés	24h
Nouvelles heures d'enseignement	Travaux Pratiques	56h
Nouvelles heures d'enseignement	Projets	24h

Infos pratiques

Electifs

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Menu 1	UE				
Analyse Mathématique	UE				
Biochimie	UE				
Développement web	Module	30h			
Droit et sociologie des organisations	UE	18h	10h		
Macroéconomie et politique économique	UE	16h	8h		1
Matériaux	UE	16h	6h	8h	
Mécanique appliquée - Structures, aérodynamique et mécanique du vol	UE	14h	8h	8h	
Projets expérimentaux et/ou numériques dans le domaine de la photonique	UE			30h	
Quête de la cohérence quantique et seconde révolution quantique	UE				5
Télécommunications	UE	24h	6h		
Transfert thermique	UE				
Menu 2	UE				
Analyse et traitement des signaux biomédicaux	UE	24h	6h		
Asservissement numérique	UE	12h	6h	12h	
Culture Générale	UE	20h	10h		
Énergie & Environnement	UE	16h	12h		
Energie Electrique pour le Développement Durable	UE	22h	4h	4h	
Enjeux de la chimie moderne	UE	6h	12h	12h	
Informatique Théorique	Module	20h	4h		
Interaction Matière Rayonnement	UE	22h	4h	4h	
Introduction aux processus stochastiques	UE	14h	10h	6h	
Optique pour le biomédical	UE	16h	8h		
Thermomécanique des milieux continus	UE	16h	12h	2h	
Menu 3	UE				
Capteurs, principes et mise en oeuvre	UE	10h	4h	16h	
Dynamique des milieux continus	UE	12h	8h	10h	
Finance : introduction aux modélisations économiques et mathématiques	UE	16h	6h		1
Intelligence Artificielle et Jeux	Module	14h	16h		
Matériaux Semi-Conducteurs, propriétés et Applications	UE	24h	6h		
Microcontroleurs et leur environnement	UE	14h	8h	8h	
Philosophie économique et anthropocène	UE	6h	10h	1h	
Programmation Objet	Module	4h	8h	18h	
RIS (Rechercher, Identifier, Séparer)	UE	2h		28h	
Télédétection et applications	UE	14h		16h	
Opérations de la chaine du solide	UE				

Menu 1

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Analyse Mathématique	UE				
Biochimie	UE				
Développement web	Module	30h			
Droit et sociologie des organisations	UE	18h	10h		
Macroéconomie et politique économique	UE	16h	8h		1
Matériaux	UE	16h	6h	8h	
Mécanique appliquée - Structures, aérodynamique et mécanique du vol	UE	14h	8h	8h	
Projets expérimentaux et/ou numériques dans le domaine de la photonique	UE			30h	
Quête de la cohérence quantique et seconde révolution quantique	UE				5
Télécommunications	UE	24h	6h		
Transfert thermique	UE				

Analyse Mathématique

Infos pratiques

Nom responsable UE

Responsable pédagogique

Magali Tournus

■ magali.tournus@centrale-marseille.fr

Biochimie

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alexandre Martinez

■ alexandre.martinez@centrale-marseille.fr

Développement web

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Cet électif vise à la découverte du monde de la création web, côté informatique. Vous y apprendrez ce qu'est un site web, un serveur web et comment les créer.

Après cours introductifs vous permettant d'appréhender le domaine, l'UE sera entièrement réalisée en mode projet avec des points d'avancement régulier.

A l'issue de ce cours vous aurez de bonnes connaissances en web front (html, css, js) et back (gestion de données via une API, routes, node et express).

Description du programme

Quasiment entièrement en mode projet, cett UE doit vous permettre, selon vos envies et votre niveau, de vous initier à un modèle de développement particulier. Par exemple :

- la base du web avec des fichiers css, html et js
- création d'un serveur web avec node/express

Cette UE n'est pas réservée aux férus d'informatique, même s'il faut ne rien avoir contre écrire un peu de code. Toute personne intéressée par le sujet pourra y développer ses compétences en informatique en général et dans le web en particulier.

A l'issue de cette UE, que vous soyez débutant ou développeur amateur, vous aurez compris ce qu'est le développement web et serez en mesure de construire vos propres sites en trouvant et comprenant les ressources adaptées sur le net.

Modalité de contrôle des connaissances

Contrôle continu

Equipe pédagogique

François Brucker

Objectif de Développement Durable

Accès à des emplois décents

Total des heures 30h Cours Magistral 30h

Nouvelles heures d'enseignement

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Droit et sociologie des organisations

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Avoir une expérience au sein d'une organisation (stage en entreprise, engagement associatif...)

UE SHS

Objectifs d'apprentissage

- * Initier aux concepts fondamentaux de la sociologie des organisations
- * Comprendre les comportements dans le contexte de l'action collective organisée
- * Appréhender les organisations comme des systèmes d'acteurs interdépendants
- * Mobiliser les méthodologies et les concepts de la sociologie des organisations pour réaliser le diagnostic d'une situation organisationnelle ou d'un processus décisionnel vécu.
- * Comprendre les enjeux juridiques associés à la vie des organisations, en particulier dans le contexte des entreprises et des associations.
- * Connaitre les sources normatives et leur articulation (droit social, droit des contrats).
- * Comprendre le contexte et les voies de résolution des conflits juridiques.

Description du programme

SOCIOLOGIE

1-Structures et dispositifs organisationnels

- 1.1. La rationalisation des organisations (OST, bureaucratie)
- 1.2. Les configurations organisationnelles
- 2- Approches psycho-sociologiques des organisations
- 2.1. Le « facteur humain » et l'école des relations humaines
- 2.2 L'analyse de la motivation
- 3- Analyse stratégique des organisations
- 3.1. Méthode et concepts de l'analyse stratégique (pouvoir)
- 3.2. Coopération et conflit dans les organisations

DROIT

- 1- L'organisation juridique : structure et fondements
- 1.1. La règle de droit
- 1.2. Les sources du droit
- 1.3. L'organisation juridique et la hiérarchie des normes
- 1.4. Principes fondamentaux : preuves, conciliation et responsabilité
- 2- L'individu dans l'organisation : le droit social
- 2.1. Les aspects individuels du droit du travail
- 2.2. Les aspects collectifs du droit du travail
- 3- Le contrat : un espace de liberté, de volonté et de négociation individuelle
- 3.1. La formation du contrat
- 3.2. L'exécution du contrat

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Caractériser une organisation
- * Formuler une problématique organisationnelle
- * Mobiliser les concepts sociologiques pour expliquer les comportements individuels et collectifs dans un contexte organisationnel précis.
- * Formuler des préconisations managériales en lien avec les problématiques organisationnelles.
- * Identifier les fondements juridiques du droit social et du droit du travail
- Identifier les voies de résolution judiciaire des conflits du travail.

Modalité de contrôle des connaissances

100% contrôle continu avec :

- 60% sociologie (dossier individuel)
- 40% droit (examen écrit)

Bibliographie

Alexandre-Bailly (dir.), Comportements humains et management, Pearson, 4ème édition.

Introduction générale au droit, Dalloz.

Equipe pédagogique

Laetitia PIET

Isabelle VASSEROT

Objectif de Développement Durable

Accès à des emplois décents

Justice et paix

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	18h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laetitia Piet

■ laetitia.piet@centrale-marseille.fr

Macroéconomie et politique économique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Aucun

Objectifs d'apprentissage

Ce cours propose une vue d'ensemble de la macroéconomie en expliquant de manière simple et rigoureuse les notions de la discipline : que mesure le PIB ? Pourquoi recherche-t-on la croissance ? Quels sont les effets de l'inflation ? Comment apparait le chômage ? Qu'est-ce qu'un taux de change ? À quoi servent les marchés financiers ? Nous aborderons cela à l'aide des principaux modèles macroéconomiques, en économie fermée comme en économie ouverte. Une attention particulière sera portée à l'analyse des politiques économiques et de leurs impacts sur les différentes variables économiques clefs.

Description du programme

Dans ce cours nous nous concentrerons sur la macroéconomie de court et moyen terme. Une attention particulière sera portée à l'analyse des politiques économiques et de leurs impacts sur les différentes variables économiques clefs. Cette analyse sera menée tout au long du cours en ayant recours à la modélisation. Le plan (prévisionnel) est le suivant :

Chapitre 1 : Les principaux indicateurs économiques

Chapitre 2 : Le modèle classique

Chapitre 3: Monnaie et inflation

Chapitre 4 : Le chômage

Chapitre 5: La macroéconomie de court terme

Chapitre 6 : La macroéconomie à moyen terme : la prise en compte des prix

Chapitre 7: La macroéconomie dans un monde ouvert

Les élèves souhaitant étudier l'analyse macroéconomique de long terme pourront s'orienter vers l'UE d'économie du parcours DMC.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Maitriser la complexité des systèmes économiques dans lequel s'inscrivent les agents économiques.
- * Acquérir une vision stratégique en comprenant les implications des choix de politiques économiques menés par les pouvoir publics.

Modalité de contrôle des connaissances

100% examen sur table.

Bibliographie

Macroéconomie, Gregory N. Mankiw, De Boeck.

Macroéconomie, Olivier Blanchard et Daniel Cohen, Pearson.

Equipe pédagogique

Nicolas Clootens

Objectif de Développement Durable

Éradication de la pauvreté

Accès à des emplois décents

Réduction des inégalités

Total des heuresCoursCours Magistral16hExercicesTravaux Dirigés8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nicolas Clootens

■ nicolas.clootens@centrale-marseille.fr

Matériaux

Fn bref

> Langue de cours: Français

Présentation

Prérequis

General chemistry

Objectifs d'apprentissage

This module will enable students to broaden their physical chemistry skills and knowledge in the field of materials science. The principles of synthesis (polymerization, sol gel, etc ...) and the characterization of the materials will also be treated.

Description du programme

- Theoretical aspect of the chemical reactions involved.
- Materials science and physical and chemical characterization: highlight on the structure-property relationship.
- Global vision of the potential of materials: From a domestic utility to an application in high technology.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Theoretical aspects:

Structure of solids and defects

Major families of materials will be studied: organic polymers, inorganic and ceramic materials, hybrid organic-inorganic materials and metals.

Organic polymers: polycondensation, chain polymerization. Characterization. Mechanical properties. From oil to polymer

Inorganic materials, ceramics, glasses: Chemical synthesis, physical and chemical synthesis. The sol gel process.

Inorganic-organic hybrid materials. Synthesis. Characterization. Structure-property relationship. Fuel cells.

Metals via materials science

Practical teachings:

Synthesis of an adhesive

Synthesis of an organic polymer

Synthesis of a functionalized hybrid material

Modalité de contrôle des connaissances

Evaluation	Туре	Duration	% final note
Final test	Written	1 h	30
Continuous examination	Report and MCQ	-	70

Bibliographie

Handout with holes

Equipe pédagogique

Damien HERAULT

Innocenzo De Riggi

Total des heures 30h

Course	Cours Magistral	16h
Tutorials	Travaux Dirigés	6h
Practical teachings	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Damien Herault

■ damien.herault@centrale-marseille.fr

Mécanique appliquée - Structures, aérodynamique et mécanique du vol

En bref

> Langue de cours: Français

Présentation

Prérequis

Mécanique des milieux continus, élasticité linéaire, mécanique des fluides

Objectifs d'apprentissage

- Acquérir les connaissances nécessaires à la compréhension des modèles de structures (hypothèses et cadre d'application), ainsi que les méthodes de dimensionnement associées :
- -- Savoir modéliser les structures à base de poutres
- -- Maîtriser les méthodes de dimensionnement en élasticité linéaire
- -- Savoir poser et analyser un problème de dimensionnement de treillis de poutre dans un logiciel éléments finis
- Acquérir les notions fondamentales en aérodynamique :
- -- Connaître les bases de l'aérodynamique autour d'obstacles profilés
- -- Savoir dimensionner les efforts sur des profils portants
- -- Comprendre le concept de modèles locaux en mécanique des fluides
- Acquérir les notions fondamentales en météorologie et mécanique du vol :

- -- Comprendre la structure de l'atmosphère, ainsi que la genèse des perturbations météorologiques
- -- Savoir calculer le vent à partir des cartes de pressions
- -- Comprendre le fonctionnement aérodynamique d'un avion en vol

Description du programme

- 1ère partie : Structures
- -- Rappels d'élastodynamique tridimensionnelle (cinématique, sthénique, loi de Hooke, équations locales, formulations intégrales)
- -- Modèles de poutres :
- --- Principe de Saint Venant
- --- Hypothèses cinématiques d'Euler-Navier-Bernoulli
- --- Etablissement du modèle de poutre mince
- --- Théorèmes énergétiques (Ménabréa et Castigliano)
- --- Dimensionnement
- 2ème partie : Aérodynamique
- -- Rappels de mécanique des fluides incompressibles
- -Ecoulements potentiels
- -Coefficients aérodynamiques
- -Couche limite laminaire / turbulente
- 3ème partie : Mécanique du vol
- -Initiation à la météorologie.
- -Structure de l'atmosphère et valeurs numériques de l'atmosphère
- -Vent géostrophique et locaux
- -Les nuages
- -Fronts et perturbations

- -Mécanique du vol
- Aérodynamique d'un profil portant
- -Les tourbillons marginaux
- -Les volets hypersustentateurs
- -Gouvernes et commandes
- -Le vol horizontal rectiligne
- -Montée et descente : pente et vitesse ascensionnelle.
- -Stabilité de vol

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Maitriser les outils de modélisation pour valider des solutions technologiques innovantes (C1)
- Savoir modéliser et analyser des structures complexes (C2)
- Maîtriser les méthodes de dimensionnement (C2)
- Savoir calculer les efforts aérodynamiques sur des structures (C2)
- Comprendre les bases de la météorologie (C2)
- Appréhender la complexité du vol des avions (C2)

Modalité de contrôle des connaissances

- DS = examen écrit de 2h (65%)
- CC = 3 CR de TP (35%)

Bibliographie

- P. Ballard et A. Millard, Poutres et arcs élastiques, Ed. Ecole Polytechnique, 2009

- I. Paraschivoiu, Subsonic aerodynamics, Ed. Ecole Polytechnique de Montréal, 2003
- P.K. Kundu and I.M. Cohen, Fluid mechanics, Elsevier, 2010
- S. Malardel, Fondamentaux de météorologie, Cépaduès Météo France, 2008
- S. Bonnet J. Verrière, Mécanique du vol de l'avion léger, Cépaduès, 2006

Equipe pédagogique

- Stéphane Bourgeois
- Olivier Boiron
- Lili Kimmoun

Objectif de Développement Durable

Bâtir une infrastructure résiliente

Villes et communautés durables

Consommation et production responsables

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Dirigés	8h
Nouvelles heures d'enseignement	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Stéphane Bourgeois

Projets expérimentaux et/ou numériques dans le domaine de la photonique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours 1A Ondes et Signal (ou équivalent)

Objectifs d'apprentissage

Cette UE propose de mettre en pratique des notions et concepts théoriques vus en cours, par le biais d'expériences et de simulations numériques qui seront effectuées en petits groupes d'élèves, encadrés par un enseignant.

À la fin du cours, les étudiants connaîtront les détails techniques de la mise en œuvre (en laboratoire ou sur ordinateur) de deux sujets différents en photonique. Ils apprendront également comment ces implémentations peuvent être utilisées pour des applications pratiques.

Description du programme

Cette année 4 sujets seront proposés :

1. Procédé de découpe laser : simulations et expériences. (L. Gallais)

Projet mêlant de la simulation numérique d'interaction laser / matière et des expériences pour comparer expériences / simulations à réaliser sur la découpeuse laser installée en salle de TP.

2. Simulations numériques et expériences sur la focalisation de faisceaux polarisés. (N. Sandeau)

Projet composé des simulations et expériences sur la focalisation à forte ouverture numérique d'un faisceau laser polarisé dans différents milieux.

3. Empilements multicouches interférentiels. (F. Lemarquis)

Les empilements multicouches interférentiels permettent de réaliser bon nombre de fonctions de filtrage spectral de la lumière telles qu'antireflets, miroirs, filtres passe-bande, passe-haut, passe-bas, et polariseurs. Après avoir présenté brièvement la thématique dans son ensemble (conception, fabrication, et utilisation), et présenté en détail les éléments théoriques propres à ces composants, l'enseignement consistera en un travail par projet pouvant porter sur divers aspects de cette thématique, comme par exemple :

- le design d'empilements (étape qui consiste à définir les formules d'empilements donnant telles ou telles propriétés de filtrage) au travers de l'utilisation de logiciel dédiés ;
- le développement de programme de calculs d'empilements multicouches ;
- des activités à cheval entre expérimentation et calcul numérique comme par exemple la caractérisation d'indice de matériaux en couche mince.
- 4. Cohérence optique. (M. Alonso)

Brève présentation de la théorie statistique de la lumière dans la description de la cohérence (spatiale et temporelle) et la polarisation partielle, suivie d'un projet numérique pour simuler ces phénomènes et certains des leurs applications.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Connaissance plus profonde de plusieurs technologies optiques, et des outils numériques et théoriques pour les modéliser.

Modalité de contrôle des connaissances

Les modalités de contrôle de connaissances seront en formes de deux projets en équipe.

Bibliographie

Articles scientifiques sélectionnés

Equipe pédagogique

Miguel ALONSO,

Frédéric LEMARQUIS,

Laurent GALLAIS,

Nicolas SANDEAU

Objectif de Développement Durable

Accès à la santé

....

Accès à une éducation de qualité

Lutte contre le changement climatique

Total des heures

Nouvelles heures d'enseignement

Travaux Pratiques

30h 30h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Miguel Alonso

™ miguel.alonso@centrale-marseille.fr

Quête de la cohérence quantique et seconde révolution quantique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

bases de physique quantique; exemple cours de 1A ECM

Objectifs d'apprentissage

Ce cours entend témoigner des développements récents de la technologie quantique. Ces recherches appartiennent à ce que l' on appelle aujourd' hui la seconde révolution quantique, la première révolution quantique correspondant aux années héroiques (1900-1930) durant lesquelles la théorie quantique a été élaborée (cfr le cours de 1A, programme alpha).

La seconde révolution a commencé, en gros, dans les années '80, avec le développement de nouveaux protocoles de communication (exemple: cryptographie quantique) et de nouveaux algorithmes quantiques, en parallèle avec le développement de nouvelles technologies visant à préparer et contrôler l' évolution de systèmes quantiques intriqués (photons, ions, atomes etc).

En février 2021, le président Macron a annoncé le lancement du Plan Quantique en France, complémentaire au programme quantique européen en information et technologies quantiques (Quantum Flagship). Ces initiatives ont pour but de développer de nouvelles technologies quantiques telles que pour exemple l'ordinateur quantique, les réseaux sécurisés de communication quantique, autant de domaines visant à atteindre à terme la suprémacie par rapport à leurs homologues classiques.

Dans ce contexte, la décohérence constitue un obstacle sérieux qui limite le développement de ces nouvelles technologies.

Description du programme

La première partie (décohérence) a pour but de définir et comprendre la décohérence quantique, ce qui se fera par le biais de l' introduction de nouveaux outils conceptuels tels que l' intrication, l' opérateur densité, et l' opérateur densité réduit d' un élément d' un système intriqué.

L' on explorera aussi la complémentarité entre cohérence et intrication, et ses implications conceptuelles en rapport avec la controverse Bohr-Einstein sur la dualité onde-particule et le paradoxe du choix différé de Wheeler.

Le rôle de la décohérence à l'échelle macroscopique sera esquissé dans le cadre de la théorie des systèmes quantiques ouverts, qui décrit l'évolution d'un système quantique en interaction avec son environnement. Ce formalisme sera illustré par une présentation de la mesure expérimentale de la décohérence dans une cavité QED à perte telle que réalisée par l'équipe de Serge Haroche au LKB à Paris (prix nobel 2012).

La seconde partie, sur les développements récents effectués dans le cadre du plan quantique consistera en un travail bibliographique et exploratoire, à définir en concertation avec les élèves.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 Innovation scientifique et technique :

L' élève apprendra à comprendre et manipuler de nouveuax formalismes et concepts qui permettent de décrire des systèmes quantiques en interaction avec leur environnement. Il/elle sera amenée de ce fait à développer de nouvelles compétences et en particulier à utiliser ce formalisme pour résoudre des problèmes simples, similaires aux problèmes traités en TD.

- C2 Maîtrise de la complexité et des systèmes.

Un système quantique ouvert est par nature un système complexe, car il est impossible de simuler parfaitement l' ineraction avec l' environnement (qui compte un nombre énorme de particules, atomes et photons), que ce soit par des méthodes numériques ou analytiques. Les concepts nouveaux présentés dans la première partie du cours permettent de traiter cette complexité intrinsèque de manière élégante et synthétique. Cette approche contribuera à élargir la culture scientifique de l' élève, ce qui constitute un prérequis pour aborder la complexité.

-C5 vision stratégique

Dans la seconde partie du cours (recherche et exploration bibliographique), l'élève sera amené à explorer un domaine scientifique en plein développement (cfr le plan quantique), ce qui, de facto, contribuera au développement de sa vision stratégique.

Modalité de contrôle des connaissances

- -CC1 30 % rapport écrit faisant suite au travail réalisé en TD
- -CC2 30 % rapport écrit de synthèse sur une partie du CM (décohérence des systèmes quantique)
- CC3 40 % sur le travail bibliographique (20 % pour le rapport et 20 % pour la présentation).

Bibliographie

- -poly pour la première partie
- -différents types de documents seront fournis et/ou sélectionnés dans le cadre du travail bibliographique.

Equipe pédagogique

Thomas Durt

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thomas Durt

thomas.durt@centrale-marseille.fr

Télécommunications

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

A l'issue de ce cours, l'élève est en mesure de comprendre les notions d'information et leur utilité pour le codage et les télécoms, de maîtriser les principes de base d'optimisation des traitements pour les télécommunications, d'apprendre à s'interroger sur le choix du système, de méthodes et d'architecture et de savoir intégrer les méthodes de traitement dans des architectures matérielles fiables et économes. Il sera aussi en mesure de porter une vision stratégique et savoir la mettre en œuvre.

Description du programme

L'exigence technologique et la pression économique ont entraîné les systèmes de télécommunications vers le développement et l'utilisation des méthodes les plus avancées pour leur conception, leur fonctionnement et leur maintenance. L'objectif commun est la transmission et le traitement de l'information : ces systèmes se déclinent sous de nombreuses formes plus ou moins proches de l'utilisateur final. Le cheminement de l'information a pris la place principale dans ce domaine, dont la face visible est le développement de l'Internet et du très haut débit, mais auquel il faut rajouter les nouvelles générations de systèmes de sauvegarde de bases de données. Cet enseignement a essentiellement pour but d'approfondir plusieurs aspects (théorie de l'information, estimation, détection...) liés aux télécommunications et leur évolution. Il permet de comprendre les mécanismes fondamentaux des télécommunications : connaître les meilleurs systèmes et dispositifs disponibles pour émettre, transmettre et recevoir un signal ou

information, choisir les techniques de traitement de ce signal ou de l'information permettant d'optimiser ces opérations, et savoir intégrer ces méthodes dans des architectures matérielles fiables et économes.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Permettre à l'ingénieur généraliste d'identifier les problématiques qui peuvent relever du traitement du signal et de la théorie de l'information pour les télécommunications, et lui fournir les éléments essentiels de ce domaine qui constitue l'un des fondements des technologies numériques. Acquérir les principes d'une démarche scientifique et les techniques nouvelles et spécifiques dont les applications industrielles et sociétales sont en pleine expansion.

Modalité de contrôle des connaissances

Contrôle Continu: moyenne d'un compte rendu et d'un écrit

Bibliographie

- L.L. Scharf, Statistical Signal Processing Detection, Estimation and Time Series Analysis, Addison-Wesley, 1991
- H. Van Trees, Detection, Estimation and Modulation Theory, John Wiley and Sons, 1968 (tomes 1, 2 et 3)
- G. Battail, Théorie de l'information Application aux techniques de communication, Masson, 1997

Equipe pédagogique

Salah Bourennane

Objectif de Développement Durable

Vie terrestre

Villes et communautés durables

Lutte contre le changement climatique

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	24h
Nouvelles heures d'enseignement	Travaux Dirigés	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Salah Bourennane

■ salah.bourennane@centrale-marseille.fr

Transfert thermique

Infos pratiques

Nom responsable UE

Responsable pédagogique

Daniel Roux

■ daniel.roux@centrale-marseille.fr

Menu 2

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Analyse et traitement des signaux biomédicaux	UE	24h	6h		
Asservissement numérique	UE	12h	6h	12h	
Culture Générale	UE	20h	10h		
Énergie & Environnement	UE	16h	12h		
Energie Electrique pour le Développement Durable	UE	22h	4h	4h	
Enjeux de la chimie moderne	UE	6h	12h	12h	
Informatique Théorique	Module	20h	4h		
Interaction Matière Rayonnement	UE	22h	4h	4h	
Introduction aux processus stochastiques	UE	14h	10h	6h	
Optique pour le biomédical	UE	16h	8h		
Thermomécanique des milieux continus	UE	16h	12h	2h	

Analyse et traitement des signaux biomédicaux

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Permettre à l'ingénieur généraliste d'identifier les problématiques qui peuvent relever du traitement du signal et de l'image pour le biomédical, et lui fournir les éléments essentiels pour l'extraction, le traitement et la représentation d'informations. Acquérir les principes d'une démarche scientifique et les techniques nouvelles et spécifiques pour le traitement des signaux biomédicaux. Maîtriser les techniques de traitement, d'analyse et d'interprétation.

Description du programme

L'étude des signaux et des images biomédicales est un domaine particulier du traitement du signal. Le traitement des signaux biomédicaux est une discipline ayant connu ces dernières années un développement important. L'aide au diagnostic à partir d'outils de traitement du signal joue un rôle clé dans les progrès de la médecine. Ce cours portera sur les aspects fondamentaux de l'extraction, du traitement et de la représentation d'informations contenues dans des signaux.

Il s'agit ici de découvrir certaines techniques de base utilisées pour la modélisation et l'analyse des signaux et images biologiques à partir d'exemples concrets d'application de ces techniques aux besoins du milieu médical (électro-encéphalogramme, électrocardiogramme, imagerie par résonance magnétique, imagerie nucléaire...). Utiliser, mais aussi adapter différentes techniques, comme le filtrage, l'analyse spectrale, l'analyse temps-fréquence, l'estimation, la reconnaissance de formes, etc., afin de les utiliser au mieux pour les applications recherchées.

Des séances de TD portant sur l'utilisation de logiciels de simulation et d'analyse auront pour but d'illustrer le contenu théorique du cours en faisant usage de données réelles et/ou simulées.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Apprendre à se questionner sur le choix de méthodes.
- Maîtriser les principes de base de modélisation et d'analyse.
- Maîtriser la complexité des systèmes et des problématiques qu'il rencontre.
- Porter une vision stratégique et savoir la mettre en œuvre.

Modalité de contrôle des connaissances

Contrôle continu : une moyenne des comptes rendus et des écrits

Bibliographie

Supports de cours

Equipe pédagogique

Salah Bourennane

Caroline Fossati

Objectif de Développement Durable

Lutte contre le changement climatique

Vie aquatique

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	24h
Nouvelles heures d'enseignement	Travaux Dirigés	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Caroline Fossati

caroline.fossati@centrale-marseille.fr

Asservissement numérique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Automatique des systèmes linéaires continus

Objectifs d'apprentissage

En complément des enseignements d'électronique et d'automatique linéaire pour aborder l'étude des systèmes et leur commande numérique.

Les élèves seront capables de participer à l'élaboration d'un cahier de charges et à la conception des systèmes de commande visant à contrôler des processus (mécaniques, électroniques, chimiques, ...) en implantant un algorithme dans un calculateur.

Description du programme

Exposé des méthodes de synthèse de lois de commandes numériques assurant le comportement dynamique et statique d'un système conformément à des contraintes décrites dans un cahier des charges.

Méthodes polynomiales : méthodologies et mise en œuvre sur calculateur.

Les 3 parties développées sont les suivantes :

- Concepts généraux et outils mathématiques
- Méthodes d'étude de la stabilité et de la précision

- Méthodes de synthèse de régulateurs numériques.

Les concepts théoriques seront illustrés en TL par la mise en œuvre et la simulation de systèmes multi-physiques et de leur contrôle/commande associé.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Contribution au;

- Maitriser la complexité des systèmes.
- Développement des innovations techniques et scientifiques.
- Résolution des problèmes complexes.
- Résolution des problèmes trans-disciplinaires nécessitant l'introduction d'une commande de processus

Modalité de contrôle des connaissances

- -TP
- -Contrôle continu
- -Oral et compte rendu

Bibliographie

Documents de cours

Analyse et Régulation des processus industriels tome 2 P Borne Commande numérique de systèmes Dynamiques Roland Longchamp

Equipe pédagogique

Alain Kilidjian

Guillaume Gaton

Objectif de Développement Durable

Accès à une éducation de qualité

Egalité entre les sexes

Recours aux énergies renouvelables

Consommation et production responsables

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	12h
Nouvelles heures d'enseignement	Travaux Dirigés	6h
Nouvelles heures d'enseignement	Travaux Pratiques	12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alain Kilidjian

■ alain.kilidjian@centrale-marseille.fr

Culture Générale

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Saisir les grands débats actuels (sur l'écologie, le transhumanisme, l'antispécisme...) tout en se forgeant une culture solide (connaissance des écrits majeurs, auteurs incontournables, etc).
- * Développer ses capacités à problématiser et à argumenter.

Description du programme

Le cours sera structuré autour des thématiques suivantes :

- Maître et possesseur...
- L'homme et la nature
- Antispécisme
- Transhumanisme

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Relier les dimensions sociales, politiques, économiques, juridiques et culturelles des phénomènes contemporains.
- Développer l'esprit critique et la capacité à argumenter.
- Connaître et comprendre les évolutions du monde contemporain et les grands enjeux qui le traversent.

Modalité de contrôle des connaissances

100% Contrôle continu sous forme d'un contrôle de 2h portant sur les connaissances acquises au fil du cours.

Bibliographie

cf moodle

Equipe pédagogique

Enseignante: Lucie Luthereau (Sciences Po Aix)

Objectif de Développement Durable

Egalité entre les sexes

Réduction des inégalités

Consommation et production responsables

Lutte contre le changement climatique

Total des heures	30h

Nouvelles heures d'enseignement Cours Magistral 20h 10h

Nouvelles heures d'enseignement Travaux Dirigés

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laetitia Piet

■ laetitia.piet@centrale-marseille.fr

Énergie & Environnement

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'objectif principal est de connaître et de comprendre le fonctionnement des centrales thermiques de production d'énergie électrique modernes. Cela comprend :

- * Identifier les différents éléments constitutifs d'une centrale de production d'électricité
- * Calculer les besoins et apports énergétiques des différents organes de la centrale
- * Analyser l'efficacité énergétique
- * Concevoir une installation optimale aussi bien au niveau énergétique qu'environmental

Description du programme

Introduction

Approche générale sur les besoins en énergie et en particulier de l'électricité

Évolution des besoins et des ressources : impact environnemental

Information de base sur les combustibles

Problématique de la génération d'énergie

Comb	ustion

La Combustion homogène

La Combustion avec/sans pré-mélange

Visite

Une visite de la centrale thermique de Martigues pourra être envisageable.

Modalité de contrôle des connaissances

Évaluation par projet 100 %

Un projet de dimensionnement d'une centrale thermique sera transmis aux élèves par binôme pour mettre en œuvre l'ensemble des connaissances et des compétences acquises au cours de ce module.

Bibliographie

Disponible au centre de documentation

- Woodruff, E. B., Lammers, H. B., & Lammers, T. F. (2016). Steam Plant Operation, 10th Edition. McGraw Hill Professional.

Disponible sur VLEBooks:

- ☑ Dincer, I., & Zamfirescu, C. (2014). Advanced power generation systems. Elsevier

Equipe pédagogique

- Pascal Denis,
- Pierrette Guichardon

- Pierre Boivin

Objectif de Développement Durable

Accès à l'eau salubre et l'assainissement

Recours aux énergies renouvelables

Consommation et production responsables

Lutte contre le changement climatique

Total des heures		30h
Projets	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	12h
	Autres	2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Pascal Denis

■ pascal.denis@centrale-marseille.fr

Energie Electrique pour le Développement Durable

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- Analyser les circuits électriques monophasés et triphasés, équilibrés et déséquilibrés.
- Comprendre le fonctionnement et les mécanismes caractéristiques des composants de l'électronique de puissance en commutation.
- Acquérir les bases nécessaires à la compréhension des systèmes de conversion d'énergie électrique et électromécanique.
- Acquérir les connaissances générales sur le fonctionnement et l'utilisation des convertisseurs électromécaniques (machines tournantes).
- Connaître les propriétés élémentaires des trois types de machines électriques (continu, alternatif et pas-à-pas).
- Permettre aux élèves d'appréhender le développement, la structure et les différentes fonctions des capteurs et actionneurs des systèmes de conversion d'énergie électrique ainsi que leur alimentation électronique.
- Permettre aux élèves d'appréhender le développement, la structure et les différentes fonctions constituant les systèmes de conversion d'énergie électrique et électromécanique.

Description du programme

Circuits électriques (2 h)

Réseaux de distribution d'énergie électrique, circuits équivalents, facteur de puissance, relèvement du facteur de puissance, systèmes équilibrés et déséquilibrés, définitions et calcul et mesure de puissances.

Conversion statique de l'énergie électrique (10 h)

- Transformateur monophasé : schéma électrique équivalent et détermination des éléments, transformateur en charge, bilan énergétique, relèvement du facteur de puissance.
- Électronique de puissance : principes de l'électronique de puissance, différents types de conversion d'énergie électrique, composants d'électronique de puissance, convertisseurs de base AC-DC, convertisseurs DC-DC (du type Buck et Boost), applications de l'électronique de puissance dans les secteurs d'activités industriels et humains.

Conversion électromécanique (10 h)

- Énergies électrique, magnétique et mécanique, calcul de puissance et couple.
- Machine à courant continu (MCC) : différents types d'excitation, équations de fonctionnement, caractéristiques, bilan énergétique, entraînement à vitesse variable, moteur universel.
- Machine asynchrone (MAS): création du champ tournant, aspects technologiques, principe de fonctionnement, schéma équivalent monophasé, détermination des éléments du schéma équivalent, caractéristiques du moteur asynchrone triphasé, couple, bilan énergétique, alimentation à fréquence variable.
- Machine synchrone (MS) : constitution, aspects technologiques, principe de fonctionnement, description des machines synchrones, calcul de puissance et couple, alimentation à fréquence variable.
- Moteur pas-à-pas : principe de fonctionnement, différents types de moteurs pas-à-pas et leurs modes de commande, comportement statique et dynamique, domaines d'utilisation.

Simulation d'une machine à courant continu alimentée par un convertisseur DC/DC Buck (hacheur abaisseur) en utilisant Matlab-SimuLink.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Capacité de mener une réflexion de type « système ».
- Comprendre le fonctionnement des éléments principaux d'un réseau électrique.

- Capacité à identifier les éléments nécessaires à la compréhension des systèmes de conversion d'énergie électrique.
- Capacité à comprendre les principes élémentaires et la finalité de l'électronique de puissance, étude et analyse des convertisseurs DC/DC Buck, Boost et les convertisseurs AC/DC monophasés commandés et non commandés.
- Comprendre le fonctionnement des éléments principaux d'une motorisation électrique (exemple : traction électrique).
- Capacité à appréhender toutes les dimensions scientifiques et techniques de tous les éléments d'une chaîne de conversion d'énergie électrique et électromécanique à partir d'un cahier des charges.

Modalité de contrôle des connaissances

Évaluation de 2 h

Bibliographie

- Polycopiés de cours et de TP
- Copie des transparents du cours
- Livres disponibles à la bibliothèque de l'ECM

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	22h
Nouvelles heures d'enseignement	Travaux Dirigés	4h
Nouvelles heures d'enseignement	Travaux Pratiques	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Mohamed Boussak

mohamed.boussak@centrale-marseille.fr

Enjeux de la chimie moderne

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Bases de chimie organique et organométallique.

Objectifs d'apprentissage

L'intérêt croissant pour une industrie chimique plus responsable conduit au développement d'une chimie communément appelée «chimie verte».

Dans cet enseignement, nous nous focaliserons sur le 9ème principe de la chimie verte : la catalyse et, en particulier, la catalyse homogène. Cette thématique sera abordée au travers d'une approche originale de la réaction chimique.

Il s'agira de comprendre comment fonctionne une réaction catalysée afin de pouvoir l'optimiser efficacement dans un esprit de développement durable.

Objectifs en termes d'apprentissage :

- * Comprendre le fonctionnement d'un catalyseur et son corollaire, la réaction catalysée.
- * Identifier les paramètres clés d'une réaction catalysée.
- * Savoir optimiser les paramètres.
- * Mettre en œuvre une réaction catalysée.
- * Rédiger un rapport.

Description du programme

Contenu des cours :

- * Introduction à la chimie organométallique (chimie des éléments de transitions).
- * Les étapes élémentaires d'une réaction catalytique,
- * Analyse et optimisation des paramètres d'une réaction catalysée.
- * Les oxydations et réductions catalysées par les métaux de transition

En travaux dirigés : études de publications récentes.

En travaux pratiques : mises en œuvre de réactions catalysées

Compétences et connaissances scientifiques et techniques visées dans la discipline

A l'issu de cet enseignement le participant doit être capable dans le domaine des réactions catalysées par les métaux de transition :

- * Analyser un mécanisme en terme d'étapes élémentaires.
- * Proposer un mécanisme réactionnel à partir du schéma global de la réaction.
- * Mettre en œuvre de manière pratique.
- * Etudier et comprendre un article scientifique.
- * Identifier les paramètres importants.
- * Proposer des solutions d'optimisation.
- * Rédiger un rapport scientifique.

Modalité de contrôle des connaissances

- * Un rapport sur une étude d'une synthèse originale récente.
- * Des rapports de travaux pratiques.
- * Un examen final.

Bibliographie

- Astruc, D. (2013). Chimie organométallique et catalyse. EDP SCIENCES.
- Behr, A., & Vorholt, A. J. (2017). Homogeneous Catalysis with Renewables. Springer.

- Sheldon, R. A., Arends, I., & Hanefeld, U. (2007). Green Chemistry and Catalysis (1re éd.). Wiley-VCH.

Equipe pédagogique

Laurent GIORDANO

Didier NUEL

Objectif de Développement Durable

Consommation et production responsables

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	6h
Nouvelles heures d'enseignement	Travaux Dirigés	12h
Nouvelles heures d'enseignement	Travaux Pratiques	12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Didier Nuel

☑ didier.nuel@centrale-marseille.fr

Informatique Théorique

En bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Avoir une vision d'ensemble des aspects théoriques de l'Informatique.

Description du programme

Théorie des langages (langages réguliers, langages algébriques, langages décidables, langages reconnaissables)

Machines de Turing, automates finis, automates à pile, automates à bornelinéaire . Calculabilité.

Théorie de la complexité (complexité en temps, complexité en espace, classes de complexité probabilistes, complexité de Kolmogorov)

Compétences et connaissances scientifiques et techniques visées dans la discipline

Curiosité & réflexion.

Modalité de contrôle des connaissances

Examen terminal

Equipe pédagogique

Pascal Préa

Objectif de Développement Durable

Egalité entre les sexes

Vie aquatique

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	20h
Nouvelles heures d'enseignement	Travaux Dirigés	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Pascal Prea

■ pascal.prea@centrale-marseille.fr

Interaction Matière Rayonnement

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Physique quantique, bases d'électromagnétisme

Objectifs d'apprentissage

Connaître les concepts et la théorie de base des principaux phénomènes physiques faisant interagir électrons et rayonnement de photons dans la matière. Les illustrer en particulier par le fonctionnement des lasers et leur utilisation pour modifier la matière sous impulsions laser de haute énergie. Observer ces phénomènes dans la matière vivante qui permettent de passer de l'imagerie moléculaire au diagnostic médical. Élargir au cas de rayonnements et particules divers (neutrons, rayons X...). Pouvoir faire un exposé sur un sujet au choix dans le domaine.

Description du programme

- 1. Notions sur les lasers : Comprendre le laser. (Le photon et l'électron ; absorption, émissions stimulées et spontanées ; pompage optique ; corps noir). Illustration par les matériaux pour laser en lien avec la physique atomique, et utilisation de lasers dans le reste du cours.
 - 2. Interaction laser matière: Introduction aux différentes catégories de phénomènes physiques mises en jeux (photo-thermique, photo-ionisation, photomécanique...). Illustration par des applications dans les domaines industriels (fabrication additive ou soustractive, traitements thermiques), ou médicaux (traitements cutanés, chirurgie ophtalmique). Mise en pratique par un TP numérique réalisé à l'aide de Comsol, logiciel multi physique (ex: soudure par laser).

- 3. Introduction à la bio photonique : Applications des interactions lumière-matière à l'étude de systèmes complexes : des cellules aux tissus. Etude des imageries de fluorescence et des imageries cohérentes pour comprendre le vivant ou faire du diagnostic précoce.
- 4. Physique atomique : Étude de l'interaction entre électrons et photons dans les atomes poly-électroniques sous l'effet de phénomènes physiques beaucoup plus fins que ceux vus en phys. quantique. Probabilités de transitions entre niveaux d'énergie. Effet Zeeman et Stark de champs statiques externes. Illustration sur les ions de terres rares utilisés dans les amplificateurs pour laser et les télécommunications par fibres optiques, les horloges atomiques, la résonance magnétique...
- 5. Notions sur l'interaction de la matière avec diverses particules : diffraction de rayons X et neutrons en relation avec de grandes installations à Grenoble (ESRF et ILL)
- http://www.giant-grenoble.org/fr/institut-laue-langevin-ill/
- 6. Audition des exposés des autres élèves : Sujets d'application au choix validés par les enseignants et prolongeant le cours.

Compétences et connaissances scientifiques et techniques visées dans la discipline

UE donnant les clefs pour comprendre réellement l'interaction matière—rayonnement (souvent utilisée mais seulement abordée dans d'autres UE d'applications), permettant aux élèves d'imaginer et d'innover au-delà de rester de simples utilisateurs:

- Permet la mobilisation d'une culture interdisciplinaire entre matière et rayonnement, quantique, microscopique et macroscopique.
- Compréhension du cours exerçant à comprendre et formuler des problèmes complexes en analysant les différents ordres de grandeur des phénomènes concernés.
- Exerce les capacités à approfondir rapidement un domaine tout en appréhendant toutes ses dimensions scientifiques et techniques.
- Exposé d'approfondissement exerçant à produire une recherche bibliographique, stimulant l'imagination.

Modalité de contrôle des connaissances

Contrôle continu à préciser parmi QCM, exposés, devoirs, compte rendu de TP (réforme en cours).

Bibliographie

Mécanique quantique par Claude Cohen Tanoudji et Coll Hermann 1977

Lasers et optique non linéaire

Christian Delsart Ellipses 2008, ISBN 978-2-7298-3856-0 Centre Doc ECM 626.1

Fundamental of Photonics

BEA Saleh, MC Teich Wiley, 1991, ISBN 0-471-83965-5 Centre Doc ECM

Physique atomique B. Cagnac, JC Pebay-Peyroula, Dunod université 1975

Equipe pédagogique

Jean Bittebierre

Laurent Gallais, Nicolas Sandeau

intervenant extérieur de l'ESRF: Yves Joly

Objectif de Développement Durable

Accès à la santé

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	22h
Nouvelles heures d'enseignement	Travaux Dirigés	4h
Nouvelles heures d'enseignement	Travaux Pratiques	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Jean Bittebierre

Introduction aux processus stochastiques

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours de probabilités de niveau undergraduate (3ème année de Licence, MAT-1A).

Calcul matriciel.

Objectifs d'apprentissage

- 1. L'élève saura utiliser l'espérance conditionnelle dans différentes branches des probabilités.
 - 2. L'élève pourra modéliser un certain nombre de phénomènes par des processus stochastiques adéquats.
 - 3. L'élève saura reconnaître les principaux processus stochastiques en temps discret et exploiter leurs propriétés pour donner des éléments qualitatifs ou quantitatifs quant à leurs comportements en temps long.

Description du programme

Le but de ce cours est de préparer les élèves à suivre des cours avancés en probabilités tels qu'un cours de calcul stochastique qui est le fondement des mathématiques financières ou un cours d'algorithmes stochastiques qui sont très présents en Statistique, Data Science et Machine Learning.

Ce cours de 30h se décompose en

- 7 CM (2h chacun) = 14h
- 5 TD (2h chacun) = 10h

• 3 TP (2h chacun) sous Python. = 6h

Le programme traité dans ce cours est le suivant

- 1. Espérance conditionnelle, loi conditionnelle
- 2. Filtration, temps d'arrêt, ruine du joueur, identité de Wald
- 3. Martingales en temps discret, théorèmes d'arrêt, théorèmes de convergence des martingales (Lp, presque sûrement)
- 4. Chaînes de Markov sur des espaces d'états dénombrables, propriété de Markov forte, récurrence, récurrence positive, ergodicité
- 5. Processus de Poisson: construction, propriété de Markov forte, caractérisation
- 6. Processus markoviens de sauts : définitions

Compétences et connaissances scientifiques et techniques visées dans la discipline

- 1. Calculer l'espérance conditionnelle d'une variable aléatoire à l'aide de sa loi conditionnelle ou à l'aide des propriétés de l'espérance conditionnelle (linéarité, mesurabilité, indépendance)
 - 2. Vérifier qu'un processus stochastique est une martingale et déterminer si le processus converge.
 - 3. Reconnaître une situation qui peut être modélisée par une chaîne de Markov, comprendre la propriété de Markov forte, savoir classer les chaînes de Markov en fonction de leurs comportements.
 - 4. Reconnaître une situation qui peut être modélisée par un processus de Poisson et plus généralement par un processus markovien de sauts.

Modalité de contrôle des connaissances

CC1 = écrit 100%

Bibliographie

La bibliographie sera donnée en début de cours.

Equipe pédagogique

Mitra Fouladirad

Thibault Le Gouic

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Travaux Pratiques	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Mitra Fouladirad

mitra.fouladirad@centrale-marseille.fr

Optique pour le biomédical

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Bases de physique des ondes et électromagnétisme.

Bases d'optique géométrique et optique ondulatoire

Objectifs d'apprentissage

L'imagerie du vivant regroupe l'ensemble des techniques utilisées pour l'acquisition et la restitution d'images à toutes les échelles du vivant, in vivo ou in vitro, pour des applications en biologie ou en médecine. Le but de l'imagerie est de créer une représentation visuelle de l'information que l'on cherche à étudier. C'est un domaine qui se situe au croisement de disciplines telles que la biologie, la médecine, l'optique/photonique et le traitement des signaux.

L'imagerie -- et plus généralement l'optique -- pour le biomédical désigne les techniques qui ont pour but de sonder et d'observer les organes. Dans ce cadre, on peut aborder les notions physiques et les modélisations liées à l'interaction entre les tissus (diffusants et/ou absorbants) avec la lumière. L'objectif est ici de montrer comment à partir d'une mesure liée à l'interaction entre une onde et un tissu, on peut construire une image (modélisation, reconstruction...).

Dans ce contexte, les techniques optiques présentent l'intérêt d'être non invasives, non ionisantes (et donc non dangereuses pour le patient), elles utilisent également des instruments peu coûteux (par rapport à d'autres appareillages très lourds) et miniaturisables (endoscopes, fibres optiques...).

On abordera ici les techniques d'imagerie haute résolution pour sonder et observer à l'échelle de la cellule ou au-delà. La microscopie optique est une technique très utilisée pour l'observation des mécanismes cellulaires, qui peut être enrichie de nombreuses modalités permettant d'augmenter d'une part la sensibilité, le contraste, la spécificité, et d'autre part la résolution. Un des objectifs de cette UE est de présenter quelques-unes des techniques avancées utilisées en biophotonique (la microscopie de fluorescence qui fait partie des techniques de référence pour marquer des structures cellulaires précises et ainsi d'étudier des fonctions biologiques particulières, la microscopie non linéaire qui permet de générer de nouveaux contrastes...).

On évoquera également d'autres techniques d'imagerie à plus large échelle, telle que la tomographie de cohérence optique (OCT), ainsi que les méthodes d'imagerie de tissus pas approches tomographiques d'optique diffuse. L'utilisation de la polarimétrie pour l'imagerie des tissus sera également abordée ainsi que l'utilisation de la lumière dans les applications de thermothérapies.

Ce domaine, en plein essor, fonctionne autour de consortiums qui regroupent des hôpitaux, des startups, des grands groupes et des laboratoires de recherche. Les ingénieurs qui y opèrent doivent maîtriser les enjeux et les problématiques de la biologie et du médical, et ont des compétences pointues dans les sciences et technologies de l'imagerie.

Description du programme

- Introduction générale
- Rappels d'électromagnétisme dans la matière
- Propriétés optiques des tissus
- Microscopie(s): principe de base, modalités de contraste, microscopies de fluorescence et techniques avancées
- Tomographie de Cohérence Optique (OCT): principe et applications
- Tomographie optique diffuse: modélisation de la diffusion, introduction à la tomographie et à la reconstruction par problèmes inverses
- Interaction laser-matière biologique, Introduction à la photothérapie

Modalité de contrôle des connaissances

Contrôle continu intégral, comprenant deux notes:

- une note individuelle de Contrôle écrit. **Durée épreuve 1h30, avec documents autorisés**. (Les modalités de l'épreuve sont susceptibles d'évoluer) (75% max. de la note totale d'UE)
- une note individuelle de travail d'autonomie (25% min. de la note totale d'UE) évaluée sur le rendu documentaire.

Equipe pédagogique

Julien FADE

Objectif de Développement Durable

Accès à la santé

Vie terrestr

Vie aquatique

Accès à une éducation de qualité

Total des heures		30h
Cours	Cours Magistral	16h
TD	Travaux Dirigés	8h
Travail en Autonomie	Apprentissage en Autonomie	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Julien Fade

■ julien.fade@centrale-marseille.fr

Thermomécanique des milieux continus

En bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Le cours est scindé en deux parties distinctes

- 1re partie : Mécanique des fluides compressibles
- Acquérir les connaissances nécessaires à la compréhension des écoulements compressibles
- Connaître les bases théoriques de l'aérodynamique compressible
- Comprendre les principaux mécanismes induits par les effets de la compressibilité
- Savoir calculer les caractéristiques d'ondes de choc droites ou obliques
- Savoir calculer les écoulements dans des tuyères de Laval
- 2e partie : Comportements thermomécaniques des matériaux solides
- Connaître les grands types de comportements des solides
- Comprendre le cadre thermodynamique sous-jacent à tout modèle de comportement

- Savoir utiliser les modèles les plus courants

Description du programme

- 1re partie : Mécanique des fluides compressibles
- Introduction générale exemples de manifestations de la compressibilité en aéronautique/spatial
- Rappels de mécanique des fluides
- Effets de la compressibilité Ondes de Mach
- Conservation de l'énergie Équations de Saint-Venant
- Application à l'étude de la tuyère de Laval Choc droit
- Chocs obliques et chocs courbes
- Détente de Meyer-Prandtl
- 2e partie : Comportements thermomécaniques des matériaux solides
- Thermoélasticité
- Échangeur thermique
- Thermoviscoélasticité
- Autoéchauffement
- Élastoplasticité
- Mise en forme des métaux

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Comprendre les bases de la mécanique des fluides compressibles (C2)
- Appréhender les effets de la compressibilité, notamment en aéronautique et en thermopropulsion (C2)
- Savoir calculer les caractéristiques d'ondes de choc (C2)

- Comprendre les bases de la thermomécanique des solides (C2)
- Connaître les principaux comportements thermomécaniques des solides (C2)

Modalité de contrôle des connaissances

- DS = Evaluation écrite de 2 x 1 h (85 %)
- CC = un CR de TP (15 %)

Bibliographie

- P.K. Kundu et I.M. Cohen, Fluid mechanics, 4e édition, Elsevier, 2010
- W.E. Carscallen et coll., Introduction to compressible fluid flow, CRC Press, 2014
- J. Lemaître et coll., Mécanique des matériaux solides, éd. Dunod, 2009

Equipe pédagogique

- Olivier Boiron
- Thierry Désoyer
- Dominique Eyheramendy
- Yannick Knapp

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	12h
Nouvelles heures d'enseignement	Travaux Pratiques	2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Olivier Boiron

olivier.boiron@centrale-marseille.fr

Menu 3

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Capteurs, principes et mise en oeuvre	UE	10h	4h	16h	
Dynamique des milieux continus	UE	12h	8h	10h	
Finance : introduction aux modélisations économiques et mathématiques	UE	16h	6h		1
Intelligence Artificielle et Jeux	Module	14h	16h		
Matériaux Semi-Conducteurs, propriétés et Applications	UE	24h	6h		
Microcontroleurs et leur environnement	UE	14h	8h	8h	
Philosophie économique et anthropocène	UE	6h	10h	1h	
Programmation Objet	Module	4h	8h	18h	
RIS (Rechercher, Identifier, Séparer)	UE	2h		28h	
Télédétection et applications	UE	14h		16h	
Opérations de la chaine du solide	UE				

Capteurs, principes et mise en oeuvre

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Notions de base en électronique.

Objectifs d'apprentissage

Les capteurs sont multiples et touchent tous les domaines de la mesure et de l'instrumentation, leur diversité rend leurs choix souvent difficiles à établir.

L'ambition de cet enseignement est de permettre à l'ingénieur de dégager des critères pertinents pour orienter le choix d'un capteur et de son environnement électronique (conditionneur) à partir d'un cahier des charges ; l'environnement ainsi que l'exploitation des capteurs seront développés et étudiés en travaux pratiques.

Description du programme

L'objectif de cet enseignement est de s'intéresser à l'exploitation d'un phénomène physique pour générer une information utilisable dans le cadre d'un contrôle de processus.

Notions abordées:

- Caractéristiques métrologiques des capteurs (grandeurs d'influence, erreurs sur la mesure, étalonnage du capteur, limites d'utilisation, sensibilité, rapidité, temps de réponse...)

- Les différents principes physiques utilisés pour la conception des capteurs
- Capteurs passifs et capteurs actifs
- Conditionnement du signal pour les capteurs passif et actifs
- Capteurs traités suivants leurs applications (température, pression, position,)
- Etude pratique d'un système comportant des capteurs de natures différentes.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Contribution à:

- Maitriser la complexité des systèmes.
- Développement des innovations techniques et scientifiques.
- Résolution des problèmes complexes.
- Résolution des problèmes transdisciplinaires nécessitant l'introduction d'une commande de processus.

Modalité de contrôle des connaissances

Travail personnel: - Exposé / Rendu écrit. (50%)

Projet: Compte rendu. (50%)

Bibliographie

Documents constructeurs

Les capteurs en instrumentation industrielle (G Hasch Dunod).

Equipe pédagogique

Alain Kilidjian

Objectif de Développement Durable

Accès à la santé

Villes et communautés durables

Accès à l'eau salubre et l'assainissement

Bâtir une infrastructure résiliente

Consommation et production responsables

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	10h
Nouvelles heures d'enseignement	Travaux Dirigés	4h
Nouvelles heures d'enseignement	Travaux Pratiques	16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alain Kilidjian

■ alain.kilidjian@centrale-marseille.fr

Dynamique des milieux continus

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Les cours de mécanique/mécanique des milieux continus de 1ère année sont suffisants.

Objectifs d'apprentissage

Poursuivre/approfondir la formation en mécanique des milieux continus en insistant sur les mouvements et les phénomènes dynamiques.

En particulier :

- Connaître les notions de base utilisées par les ingénieurs dans le domaine de la dynamique, des vibrations et de l'acoustique dans les fluides et les solides. Sur la base d'une série de travaux pratiques et de deux cours fondamentaux réduits à l'essentiel, on présente et on modélise un certain nombre de phénomènes dynamiques, de nature vibratoire ou acoustique, qui se manifestent dans ces milieux. On illustre comment les ingénieurs les utilisent pour la conception, l'optimisation, la surveillance ou la maintenance des systèmes mécaniques industriels.
- Connaître les bases et les propriétés essentielles de la turbulence, afin de pouvoir traiter et modéliser les diverses situations pratiques qui apparaîtront en S9 ou lors de cursus en mobilité internationale. On posera les bases théoriques qui permettent d'analyser et de modéliser les phénomènes associés aux écoulements turbulents. Cela permet de faire prendre conscience aux élèves que, dans la nature et l'industrie, les écoulements sont essentiellement turbulents. Traiter ces écoulements requiert des compétences et des outils (à la fois analytiques et de modélisation) spécifiques qui sont très différents de ceux utilisés pour les écoulements laminaires (vus en 1re année).

Description du programme

Pour la partie sur la dynamique, les vibrations et l'acoustique, quelques exemples de TP qui complètent les deux séances de cours :

- Détermination expérimentale d'un mode de vibrations
- Reconstruction d'un mouvement par superposition modale
- Mesure de puissance acoustique d'une source
- Mesure des propriétés absorbantes de matériaux
- Analyse audio de signaux acoustiques, niveaux et indicateurs sonores
- Calcul numérique des modes de structures avec les logiciels Abaqus et Matlab (par la méthode des éléments finis et la méthode de Ritz)

Pour la partie sur l'initiation à la turbulence en mécanique des fluides :

Quatre séances de cours sur :

- Apparition de la turbulence, transition laminaire/turbulente, nécessité d'un traitement statistique (décomposition de Reynolds)
- Équations de bilan pour les grandeurs moyennes, tensions de Reynolds, énergie cinétique de la turbulence
- Modélisations de base (longueur de mélange, viscosité turbulente), échelles caractéristiques, spectre de Kolmogorov
- Application au cas du mélange d'un scalaire, diffusivité turbulente, analogie avec la marche aléatoire (mais avec des échelles de longueur et de vitesse caractéristiques de l'écoulement et non pas du fluide comme en régime laminaire)

Ces quatre séances de cours sont complétées par des séances de TD (4 TD de 2 h), afin d'illustrer les notions présentées en cours par quelques exemples concrets.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 : Innovation scientifique et technique : par exemple, pour se préparer à un stage S8 en laboratoire dans l'un de ces domaines ou à un cursus académique à l'international dans une spécialité liée à la mécanique où ces notions seront reprises de façon beaucoup plus approfondie
- C2 : Maîtrise de la complexité et des systèmes :
- -> Apprendre à modéliser et analyser un problème, en choisissant la méthode et/ou le niveau de modélisation le plus pertinent (C2)

- -> Maîtriser les bases des méthodes de modélisation/simulation numérique associées à ces types de situations pour, par exemple, faire le stage 2A dans l'un des domaines concernés (C2)
- -> Savoir interpréter des résultats d'expérience (C2)

Modalité de contrôle des connaissances

- Cinq épreuves de TP notées (organisation en binômes ou en trinômes avec un compte rendu obligatoire à la fin de chaque séance) (50 %)
- Une épreuve écrite sur la turbulence de 2 heures (50 %)

Bibliographie

Schubert,Kim, "Fundamentals of electronics", Morgan & Claypool publishers, 2013. Floyd, Buchla, « Electronics Fundamentals Circuits, Devices, and Applications », 8th edition, 2014, Pearson. Floyd, « Digital Fundamentals », 11th edition, Pearson, 2015. Larminat, « Commande des systèmes linéaires », Hermes Science publication,1996. Granjon, « Automatique 3ème édition », 2015, Dunod

Equipe pédagogique

M. Abid, F. Anselmet et C. Kharif

Objectif de Développement Durable

Accès à une éducation de qualité

Consommation et production responsables

Recours aux énergies renouvelables

Lutte contre le changement climatique

Accès à des emplois décents

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	12h
Nouvelles heures d'enseignement	Travaux Dirigés	8h
Nouvelles heures d'enseignement	Travaux Pratiques	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Anselmet

■ fabien.anselmet@centrale-marseille.fr

Finance : introduction aux modélisations économiques et mathématiques

En bref

> Langue de cours: Français

Présentation

Prérequis

L'UE de première année "Economie et Gestion".

Objectifs d'apprentissage

Ce cours permet aux étudiants de se familiariser avec les principaux termes du monde de la finance. Par ailleurs, en introduisant les concepts mathématiques, il permet la compréhension et la modélisation des phénomènes financiers. Il a notamment pour objectif d'initier les étudiants à l'évaluation des actifs financiers, en particulier celle des actions des titres de dette, et des options.

Description du programme

Pour atteindre les objectifs, le cours est structuré de manière suivante :

- * Chapitre Introductif: Qu'est-ce que la Finance?
- * Chapitre 1 : Intérêt, Capitalisation et Actualisation
- * Chapitre 2: Les Obligations
- * Chapitre 3 : Les Actions
- * Chapitre 4 : La théorie moderne du portefeuille
- * Chapitre 5 : Les produits dérivés

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Comprendre comment sont organisés les marchés d'actions, d'obligations et de produits dérivés.
- * Comprendre comment sont évalués et côtés les produits financiers (actions, obligations, options).
- * Comprendre comment est mesuré le risque sur le marché et comment il est géré.

Modalité de contrôle des connaissances

- * Contrôle continu (1/3)
- * Examen sur table (2/3)

Bibliographie

- * Mathématiques Financières, Pierre Devolder, Mathilde Fox et Francis Vaguener, Pearson.
- * Monnaie, Banque et Marchés Financiers, Frederic Mishkin, Pearson.

Equipe pédagogique

Hajare El Hadri

Objectif de Développement Durable

Accès à des emplois décents

Total des heures		30h
Cours	Cours Magistral	16h
Travaux dirigés	Travaux Dirigés	6h
Autonomie	Apprentissage en Autonomie	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

□ renaud.bourles@centrale-marseille.fr

Responsable pédagogique

Hajare El Hadri

■ hajare.el_hadri@centrale-marseille.fr

Intelligence Artificielle et Jeux

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours de tronc commun

Programmation python

Objectifs d'apprentissage

Comprendre les principes généraux des algorithmes d'intelligence artificielle pour la résolution de problèmes.

Comprendre les principes généraux des algorithmes d'intelligence artificielle pour la résolution de problèmes avec adversaire.

Être capable d'implémenter et d'adapter ces algorithmes généraux d'Intelligence Artificielle à divers cas d'usage .

Comprendre comment l'apprentissage automatique peut être utilisé pour améliorer des algorithmes fondamentaux.

Description du programme

L'Intelligence Artificielle fête ses 60 ans d'existence. Elle recouvre un ensemble de problématiques et de techniques variées qui ont pour but de réaliser des programmes pour des tâches qui nécessitent de l'intelligence lorsqu'elles sont réalisées par des êtres humains. Si l'IA moderne est essentiellement basée sur le Machine Learning, des techniques plus anciennes permettent d'attaquer des tâches complexes telles que la résolution de problèmes, les jeux à deux joueurs et plus généralement les jeux de stratégie, et bénéficient aujourd'hui des avancées du machine learning.

Cet électif introduit les techniques et outils d'intelligence artificielle nécessaires pour réaliser des joueurs artificiels pour des jeux à deux joueurs (Échecs, Go, Backgammon...) et plus généralement pour des jeux multi-joueurs en général (Pacman) ou des jeux de stratégie.

Le cours aborde successivement :

- Une brève introduction à l'I.A.: Le domaine de l'I.A., son histoire et un état des lieux aujourd'hui
- Résolution de problèmes par exploration, ou comment écrire des programmes qui résolvent tout seuls des problèmes (problème des huit reines, etc) par exploration efficace des séquences d'actions.
- Jeux à 2 joueurs, ou comment écrire un programme qui joue contre un humain dans des jeux à nombre d'actions limité, tels que échecs, dames avec des algorithmes de type alpha-beta et ses variantes.
- Jeux à 2 joueurs et Machine Learning, ou comment améliorer un joueur artificiel avec de l'apprentissage automatique.
- Markov Decision Process et algorithmes de renforcement: une stratégie d'apprentissage particulière et adaptée à la conception d'agents autonomes de type robots, exploitable également pour des jeux avec un grand nombre d'actions tels que le Go.

Le module est enseigné pour moitié en séances de cours et pour moitié en séances sur machines (en Python).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Ce module contribue à donner une vision large des enjeux scientifiques et technologiques dans le domaine du numérique et de l'intelligence artificielle.

Il forme l'ingénieur à modéliser des problèmes de décision séquentielle pour pouvoir les résoudre avec des outils adaptés d'Intelligence Artificielle.

- Innovation scientifique et technique
- Maîtrise de la complexité des système

Modalité de contrôle des connaissances

1 rendu de projet par partie (Résolution de problèmes, Jeux à 2 joueurs, Jeux à 2 joueurs et Machine Learning)

1 examen final

Bibliographie

Artificial Intelligence: A Modern Approach, 4th US ed. by Stuart Russell and Peter Norvig: http://aima.cs.berkeley.edu/

Equipe pédagogique

Thierry Artières (ECM)

Total des heures		40h
Nouvelles heures d'enseignement	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Dirigés	16h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Artieres

■ thierry.artieres@centrale-marseille.fr

Matériaux Semi-Conducteurs, propriétés et Applications

En bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Connaitre les processus physiques de base à l'œuvre dans le fonctionnement des composants semi-conducteurs (structure de bande, densités d'états, distribution des porteurs de charge, mobilité, génération/recombinaison,...), le fonctionnement des composants élémentaires (différents types de jonction, Diodes Electroluminescentes, Capteurs Photovoltaïques).

Mettre en œuvre ces connaissances pour comprendre et dimensionner des applications dans le domaine de la photonique sur la base de considérations scientifiques, technologiques et économiques.

Description du programme

Les semi-conducteurs sont présents dans la plupart des appareils électroniques et optoélectroniques modernes que vous utilisez. Ils ont un fonctionnement dual complexe qui leur permet d'avoir suivant les conditions d'utilisation les propriétés d'un conducteur, et les propriétés d'un isolant. Cet électif a pour but d'enseigner les éléments de base de la physique des semi-conducteurs et en particulier des interactions lumière-matière dans ces matériaux, pour aborder leurs applications les plus courantes dans le domaine de la génération et de la détection de lumière (Télécoms, Eclairage, photovoltaïque).

Le cours est divisé en 3 parties :

- -Partie1: Introduction aux matériaux semi-conducteurs et composants de base (8h de cours, 2h de TD). Structure cristalline états électroniques dans les semi-conducteurs Distribution des porteurs de charge SC à l'équilibre/ SC hors équilibre Différents types de jonctions
- -Partie2: Interactions photons Semi-Conducteurs, Diodes Electroluminescentes (8h de cours, 2h de TD). Génération, Recombinaison, Injection de charges- Interactions Photons/semi-conducteurs Diodes Electroluminescentes.
- -Partie3: Photovoltaïque, des ressources aux derniers développements (8h de cours, 2h de TD). Gisement solaire, technologies photovoltaïques minérales, organiques et les derniers développements TD: propriétés des cellules et dimensionnement.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Les compétences et connaissances visées sont celles de l'innovation scientifique et technique

Il s'agit en effet de développer le socle de connaissances scientifiques et techniques de l'ingénieur centralien, notamment dans les domaines liés à la high-tech.

Les technologies semi-conducteurs sont en effet au cœur de tous les systèmes électroniques. Comprendre la base de leur fonctionnement est essentiel pour maîtriser la complexité des systèmes. Les innovations technologiques qui en sont issues répondent au besoin de créer de la valeur par l'innovation scientifique et technique.

Modalité de contrôle des connaissances

Examen de 2h

Bibliographie

- -Fundamentals of Photonics, B. E. A. Saleh, M. C. Teich (2019, Ed. John Wiley & Sons, Inc.)
- -« les énergies renouvelables aujourd'hui et demain » J. Hladik (2011, Ellipses)
- -« Energie solaire calculs et optimisation » J. Bernard (2011, Technosup, Ellipses)
- -« Energie solaire photovoltaïque » de A. Labouret et M. Villoz (2009, Dunod)

Equipe pédagogique

Laetitia Abel-Tiberini, Caroline Fossati, Laurent Gallais-During

Objectif de Développement Durable

Recours aux énergies renouvelables

Bâtir une infrastructure résiliente

Total des heuresNouvelles heures d'enseignementCours Magistral24hNouvelles heures d'enseignementTravaux Dirigés6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laurent Gallais-During

■ laurent.gallais@centrale-marseille.fr

Microcontroleurs et leur environnement

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'objectif de cette option est de vous faire découvrir et de vous familiariser avec le fonctionnement et l'utilisation des microcontrôleurs, qui sont devenus aujourd'hui des composants électroniques incontournables dans les systèmes électroniques et systèmes automatisés, en particulier les systèmes embarqués.

Objectif d'appréhender un système complexe de capteurs et actionneurs pour l'internet des objets connectés IoT.

Description du programme

Vous comprendrez l'architecture d'un système à microcontrôleur et serez capable d'écrire un programme en langage assembleur ou évolué pour mettre en œuvre un microcontrôleur.

Vous comprendrez les différentes fonctions telles acquisitions de signaux, créations de signaux analogiques pour pilotages de systèmes, transmission de signaux sous différents protocoles, ... dans des applications variées de type robotiques, commande de systèmes automatisés, domotiques, automobile, aéronautique, ...

Nous expliquerons comment piloter un microcontrôleur au sein de vos systèmes électroniques réels tels que en robotique, pilotage de système d'acquisition , imprimante 3D, automatismes . Nous lierons ce cours à l'ensemble des autres cours de la formation et métrons réellement en œuvre une acquisition de signal et pilotage de système.

Pour être réellement complet, le cours comprendra une partie sur la conception des microcontrôleurs et les différentes technologies utilisées pour les créer.

L'option sera articulée autour de cours, et essentiellement des mises en pratiques de conception et pilotage de cartes sur des sujets que vous pourrez choisir et qui peuvent être issus de vos projets associatifs ou personnels.

Vous réaliserez la programmation d'un système embarqué sur un kit que vous choisirez basé sur des composants Arduino, Raspberry...

A la fin de l'enseignement vous serez à même de décrire, comprendre , choisir et programmer un matériel microcontrôleur et le mettre en œuvre au sein d'un système et d'une application spécifique.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Créer de la valeur par l'innovation scientifique et technique par les innovations utilisées des IoT et de l'électronique embarquée et communicante.

Maitriser la complexité de systèmes par le système électronique qui répond à un problème complexe .

Diriger des programmes en gérant la série des séances de TP/ projet .

Manager de manière éthique et responsable en répondant à un problème par un système électronique qui a du sens éthique et responsable.

Modalité de contrôle des connaissances

Évaluation de la maquette réalisée, de son fonctionnement, de la programmation et de la méthode utilisée.

Bibliographie

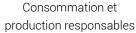
Diaporamas de cours

Documents des composants par exemple arduino, Raspberry

Equipe pédagogique

Thierry GAIDON

Caroline FOSSATI


Objectif de Développement Durable

AB4a

Recours aux énergies renouvelables Villes et communautés durables

Lutte contre le changement climatique

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Dirigés	8h
Nouvelles heures d'enseignement	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Gaidon

thierry.gaidon@centrale-marseille.fr

Philosophie économique et anthropocène

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- comprendre le rôle du dualisme nature-culture dans l'histoire de la pensée occidentale ;
- savoir formuler certains enjeux philosophiques et économiques relatifs à l'interdépendance entre l'action des êtres humains et le fonctionnement système Terre ;
- être capable d'expliciter les présupposés des arguments mobilisés par les différents protagonistes dans une controverse mettant en tension les enjeux économiques et environnementaux .
- être capable de mobiliser un cadre normatif cohérent dans la formulation d'une évaluation éthique.

Description du programme

D'un point de vue philosophique, l'anthropocène invite notamment à réinterroger le dualisme nature/culture qui a exercé une longue hégémonie sur la pensée occidentale. D'un point de vue économique, l'anthropocène suscite de nouveaux questionnements à la fois épistémologiques et éthiques sur la croissance et sa couleur (verte ou pas verte), les indicateurs de richesse et de bien-être, les « ressources naturelles », les missions respectives du secteur privé et du secteur public, ainsi que sur le rôle des entreprises et des citoyens. À la croisée de la philosophie et de l'économie, en ce lieu où des idées communes aux deux disciplines émergent et prospèrent, seront examinées quelques-unes des « idées de l'anthropocène », telles que celles de développement durable, de catastrophe, de transition, de métamorphose, d'impact, mais aussi les idées que l'anthropocène conduit à revisiter, comme celles de planification, de responsabilité, de liberté, d'égalité ou de démocratie.

I - Introduction / II - L'idée de l'anthropocène / III - Le dualisme nature - culture / IV - La quête d'abondance /

V - L'incertitude et les figures du changement / VI - La démocratie versus l'autoritarisme : la question de la liberté / VII - La fin du monde ou la fin du mois : la question de l'égalité

Compétences et connaissances scientifiques et techniques visées dans la discipline

C2 : Complexité – Les thématiques abordées par cet électif permettent de relier les dimensions historiques, sociales, politiques, philosophiques et économiques des problèmes contemporains. Il participe au développement de la compréhension de l'interdépendance des dimensions « naturelles » et « culturelles » des phénomènes.

C4: Management éthique et responsable – L'enseignement vise à approfondir la compréhension de certaines controverses éthiques que suscite la recherche du bien commun et à mieux comprendre les représentations sous-jacentes aux différents points de vue.

C5: Vision et stratégie – Cet électif contribue à une meilleure connaissance de certaines contradictions à l'œuvre dans les évolutions du monde contemporain.

Modalité de contrôle des connaissances

Dossier écrit de huit pages environ sur un thème choisi par l'élève en concertation avec l'enseignant. (100 % écrit)

Bibliographie

Bonneuil, C., & Fressoz, J. (2016). L'Événement Anthropocène. La Terre, l'histoire et nous (Points histoire). POINTS.

Charbonnier, P. (2020). Abondance et liberté. La Découverte.

Latour, B., (2015). Face à Gaïa - huit conférences sur le nouveau régime climatique. La découverte.

Equipe pédagogique

Guillaume Quiquerez

Objectif de Développement Durable

Éradication de la pauvreté

Réduction des inégalités

Consommation et production responsables

Lutte contre le changement climatique

Partenariats pour la réalisation des objectifs

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	6h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Travaux Pratiques	1h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	13h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Guillaume Quiquerez

■ guillaume.quiquerez@centrale-marseille.fr

Programmation Objet

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Savoir programmer en approche orientée objet, et ce, grâce au langage C++. Il faut donc comprendre tout d'abord que l'on n'aborde pas un programme de la même manière en classique et en objet. Puis, on doit avoir une vision globale de sa décomposition en objets et utiliser les concepts de ce type de programmation. Un élève ayant suivi ce cours doit être capable de structurer et de programmer en C++, mais aussi de rapidement se former à tout autre langage objet. Ce type de langage est aujourd'hui indispensable pour intégrer une entreprise : il peut se trouver à différents niveaux et pour des programmations très différentes, qu'elles soient scientifiques, de gestion, Web ou autres.

Description du programme

Bases : langage C sur lequel est écrit le C++.

C++: la notion de référence; les références en paramètres de fonctions, les références sur des données constantes, les arguments par défaut des méthodes, la surcharge de fonctions et de méthodes, les fonctions en ligne, l'allocation dynamique de mémoire, les tableaux, la position de la déclaration des variables, le prototypage obligatoire, les entrées/sorties, les classes et les objets, les tableaux d'objets, les attributs et les méthodes et leur accessibilité, les constructeurs et les destructeurs, la pseudo-variable this, les membres static, l'héritage, la pseudo-variable super, les listes chaînées, la surcharge d'opérateurs, les templates, la notion d'exceptions.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Cette unité d'enseignement apporte des bases informatiques incontournables à l'ingénieur centralien, donc des bases scientifiques et techniques qui sont importantes pour l'innovation scientifique et technique (thème 1). Ce n'est qu'avec une décomposition structurée des problèmes que nos ingénieurs pourront aborder des systèmes complexes (thème 2) : l'approche orientée objet le permet.

Modalité de contrôle des connaissances

Pour 20 % de la note, un petit travail à réaliser (CC) à la suite d'un TP, et pour les 80 % restants un projet final à faire en binôme

Bibliographie

- Transparents de cours
- Henri Garetta, Le langage C++

Equipe pédagogique

C.Jazzar

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	4h
Nouvelles heures d'enseignement	Travaux Dirigés	8h
Nouvelles heures d'enseignement	Travaux Pratiques	18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Catherine Jazzar

catherine.jazzar@centrale-marseille.fr

RIS (Rechercher, Identifier, Séparer)

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Aucun

Objectifs d'apprentissage

La séparation des composants d'un mélange, leur identification et leurs quantifications sont des problématiques quotidiennes pour les chimistes de synthèse, aussi bien au laboratoire que dans l'industrie.

Cette option vise à aborder les différents aspects de ce problème sous la forme de mini-projets dans lesquels une petite équipe sera amenée à déterminer une méthode de séparation des constituants d'un mélange pour ensuite les caractériser et, bien sûr, les quantifier.

Objectifs:

- * Apprendre à construire une démarche scientifique.
- * Apprendre à définir un protocole expérimental.
- * Mettre en œuvre un protocole expérimental.
- * Utiliser des méthodes d'identification de composés chimiques.
- * Utiliser des méthodes de quantification des composants d'un mélange chimique.

Description du programme

La majorité des créneaux sera consacrée à de la pratique à la plateforme de chimie. Il s'agira de déterminer et d'appliquer la meilleure méthode pour séparer les composants d'un mélange (connu à l'avance).

Ensuite, il faudra quantifier et proposer des méthodes d'identification des différents composants du mélange.

Parmi les mélanges proposés les années précédentes, on peut citer les colorants, des principes actifs de médicaments ou des composants de denrées alimentaires (chocolat ou thé, par exemple).

Il y aura également quelques présentations de techniques modernes d'identification et de quantification de composés (RMN, HPLC, Spectroscopies IR et UV-Visible)

Compétences et connaissances scientifiques et techniques visées dans la discipline

Cet enseignement s'inscrit dans la maîtrise des environnements complexes.

Il s'agit en effet de modéliser correctement le système, afin de déterminer la meilleure solution et de la mettre en œuvre.

Le travail étant réalisé au sein d'une petite équipe, il sera également nécessaire d'organiser le travail du groupe pour mener à bien le projet.

- * Modéliser un problème
- * Trouver une solution adaptée
- * Définir un protocole expérimental
- * Mettre en œuvre le protocole
- * Avoir un regard critique sur les résultats obtenus
- * Rédiger un rapport
- * Présenter oralement des résultats

Modalité de contrôle des connaissances

- Rapport écrit

Bibliographie

Rouessac, F., & Rouessac, A. (2009). Analyse chimique (7e éd.). Dunod.

Skoog, D. A., & West, D. M. (2015). Chimie analytique (2015) (French Edition) (3e éd.). DE BOECK SUP.

Gilbert, M. T. (1987). High Performance Liquid Chromatography. John Wright.

Snyder, L. R., Kirkland, J. J., & Dolan, J. W. (2009). Introduction to Modern Liquid Chromatography (3e éd.). Wiley.

Equipe pédagogique

Innocenzo DE RIGGI

Didier NUEL

Objectif de Développement Durable

Accès à l'eau salubre et l'assainissement

Consommation et production responsables

Total des heuresNouvelles heures d'enseignementCours Magistral2hNouvelles heures d'enseignementTravaux Pratiques28h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Didier Nuel

☑ didier.nuel@centrale-marseille.fr

Télédétection et applications

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours de tronc commun

Objectifs d'apprentissage

L'objectif de cet enseignement est de présenter la méthodologie spécifique au domaine de la télédétection et d'en présenter des applications diverses.

Une partie importante de l'enseignement s'effectue autour de travaux pratiques afin que les étudiants puissent se confronter aux difficultés de l'analyse de données expérimentales. Des intervenants extérieurs venant de grands organismes et de grandes entreprises du secteur sont organisés afin de favoriser l'ouverture vers des applications modernes et des métiers.

Description du programme

Le contexte applicatif de ce cours est la télédétection au sens de la perception de l'environnement. Le programme consiste à présenter la problématique générale, puis à en présenter la méthodologie spécifique. Pour cet enseignement, les séances de cours et de travaux pratiques s'enchainent afin que les élèves puissent se confronter aux difficultés et développent leurs capacités d'analyse de données. Des séminaires avec des intervenants extérieurs venant de grands organismes et de grandes entreprises du secteur sont organisés afin de favoriser aussi l'ouverture vers des applications et des métiers. Des applications concrètes sont abordées.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Les compétences visées sont le développement de l'esprit critique,

la capacité à synthétiser les résultats d'une expérience (en particulier la capacité à prendre en compte l'aléatoire) ainsi que la capacité à formaliser un problème en vue de le résoudre.

Modalité de contrôle des connaissances

1 CC une moyenne robuste de compte rendus de TP

Bibliographie

Le Chevalier « Principes et Traitement des Signaux Radar et Sonar » - Masson

Equipe pédagogique

1. Roueff

R. Marion

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Pratiques	16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Antoine Roueff

■ antoine.roueff@centrale-marseille.fr

Opérations de la chaine du solide

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nelson Ibaseta Garrido

■ nelson.ibaseta@centrale-marseille.fr

Langues et Cultures Internationales 8

Fn bref

Langue de cours: Anglais, Allemand, Chinois, Espagnol, Français, Italien, Japonais

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'enseignement des LCI s'inscrit dans la formation de citoyen ne s et ingénieur e s internationaux ales avertire s et responsables.

- * Mobiliser des savoirs et des savoir-faire linguistiques, conceptuels, culturels, communicationnels.
- * Acquérir des connaissances portant sur des pratiques, des événements et/ou phénomènes historiques, culturels, sociaux, économiques et politiques en faisant varier ses représentations.
- * Développer son esprit critique.

Description du programme

- * L'enseignement des LCI comprend deux enseignements distincts par semestre : Anglais (20h) et une autre langue (20h).
- * Attention : les élèves inscrit·e·s en Double Diplôme suivront 2 enseignements de FLE au S7 et S8 s'ils rejoignent l'ECM au S7 sauf si un niveau C1 est déjà validé en FLE (40h).
- * Possibilité de débuter une LV3 selon les effectifs.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * La formation en Langues et Cultures est essentielle à l'identité de l'Ingénieur·e Centralien·ne qui devra être capable de communiquer et interagir à l'international avec des partenaires de langues et/ou cultures différentes, notamment dans un environnement professionnel.
- * Langues à maitriser : Français, Anglais + une autre langue choisie pour les élèves français.

Modalité de contrôle des connaissances

* 2 langues (50% chacune de la moyenne). Minimum de 7/20 pour chaque langue.

Les 5 compétences du CECRL seront évaluées (Modalités précisées par l'enseignant·e).

- * Contrôle continu donc présence obligatoire : plus de 2 absences compromettront la validation du semestre.
- * Ces 40 heures de cours en présentiel sont complétées par 10h de travail personnel (travail en autonomie, recherches, exercices...) par langue et par semestre.
- * Les sessions 2 porteront sur les compétences non validées en 1° session et seront gérées individuellement par les enseignant es.
- * Pour être diplômé.e, l'élève devra valider un niveau d'anglais CECRL B2+ (Toeic 850 ou équivalent) et un niveau B2 en FLE (élèves en Double Diplôme) ou un niveau 3 Orthodidacte Français langue maternelle.

Bibliographie

Selon les cours choisis

Equipe pédagogique

- * Anglais: P. Atkinson, J. Airey, V. Durbec (responsable UE), M. McKimmie, M. Kobliska
- * Espagnol: C. Enoch (responsable LV2), S. Duran, S. Carmoni, E. Munoz, V. Bertrand, Sofia Carmoni
- * Allemand : D. Ortelli van Sloun
- * FLE: V. Hamel
- * Chinois: J. Dong
- * Japonais: K. Yoshida,
- * Italien: S. Canzonieri

Objectif de Développement Durable

Egalité entre les sexes

Recours aux énergies renouvelables

Réduction des inégalités

Consommation et production responsables

Total des heures		60h
Nouvelles heures d'enseignement	Travaux Dirigés	40h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	20h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Valérie Durbec

■ valerie.durbec@centrale-marseille.fr

Train'ing S8

En bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Aucun

Objectifs d'apprentissage

Le Train'ing est un lieu dédié à l'intégration des compétences de l'ingénieur centralien articulé autour de trois grands axes : intégration scientifique, ouverture sociétale et culturelle, compétences métier.

Parmi les objectifs principaux du Train'ing:

- * Comprendre les différents types de leadership.
- * Comprendre les enjeux du management d'équipe.
- * Prendre conscience des enjeux sociétaux et des défis scientifiques.
- * Capitaliser sur l'immersion professionnelle

Description du programme

Le programme de la semaine de Training S8 permet d'aborder les thématiques d'intégration scientifique, ouverture culturelle et sociétale et compétences métier.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Les cinq compétences centraliennes sont adressées dans les semaines Train'ing.

- * C1 (Innovation scientifique et technique)
- * C2 (Maîtrise de la complexité et des systèmes)
- * C3 (Direction de programme)
- * C4 (Management des Hommes)
- * C5 (Vision stratégique)

Modalité de contrôle des connaissances

Contrôle continu, selon les activités proposées.

Equipe pédagogique

Vincent Merval

Total des heures 24h

Nouvelles heures d'enseignement Autres 24h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

□ vincent.merval@centrale-marseille.fr

Stage de fin de 2ème année

Présentation

Objectifs d'apprentissage

Le stage 2A est un stage d'assistant ingénieur permettant la découverte du métier d'ingénieur. Vous devrez réaliser une mission représentative d'un métier d'ingénieur ou de chercheur en prenant une position active au sein d'une équipe. Vous serez amené à être force d'analyse et de proposition.

Description du programme

Le stage de 2A peut se dérouler aussi bien au sein d'une entreprise qu'au sein d'un laboratoire, en France ou à l'étranger. Sa durée est comprise entre 2 et 3 mois (8 semaines minimum) se déroulant sur la période de juin à août.

Modalité de contrôle des connaissances

En plus du rapport et de l'évaluation de l'entreprise, l'élève devra faire une soutenance devant un jury composé de votre tuteur école et d'un autre enseignant permanent de l'ECM.

Modalités de la soutenance : 20 minutes de présentation, suivies de questions / discussions avec le jury.

Bibliographie

Site des stages: https://stages-emplois.centrale-marseille.fr

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Muriel Roche

muriel.roche@centrale-marseille.fr

Parcours

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Bio-ingénierie (BIO)	Module				
Les briques du vivant	Module	70h		4h	6
Imagerie et Théraphies par Ondes	Module	53h		17h	5
Biotechnologies et Thérapies Chimiques	Module	58h		10h	5
Planète BIO	Module	28h			5
	Nature	СМ	TD	TP	Crédits
Dynamique - Mutations - Crises (DMC)	Bloc				
Modélisation mathématique et statistique des systèmes complexes	Module	25h	18h	21h	5
Gestion des crises : applications physiques et chimiques	Module	23h	18h	4h	4
Optimisation et application au contrôle	Module	14h	10h	14h	3
Instabilités dynamiques et transport chaotique	Module	10h	6h	22h	3
Modélisation économique : croissance et développement durable	Module	36h	4h		3
Au-delà du modèle	Module	15h	5h	10h	3
	Nature	СМ	TD	TP	Crédits
Environnement : management et technologies (ENV)	Module				
Management environnemental	Module	32h	6h		3
Economie circulaire	Module	25h	12h	12h	4
Chimie durable	Module	28h	6h	8h	4
Effluents et pollutions	Module	26h	14h	4h	4
Surveillance de la qualité environnementale	Module	36h	8h	16h	4
Projet	Module	0011	OH	1011	2
	Nature	СМ	TD	TP	Crédits
Energie durable (ENE)	Module	Oivi			Orcuito
Introduction aux enjeux énergétiques et aspects transverses et sociétaux	Module	34h			3
Energie solaire	Module	28h	8h		3
Energies marine éolienne et hydraulique	Module	50h	OH		4
Energie nucléaire	Module	30h	10h	20h	4
D'autres énergies pour demain ? Les exemples de la biomasse et de l'hydrogène	Module	18h	12h	2011	2
Notions énergétiques transverses : transport, conversion, stockage et énergie électrique	Module	20h	1211		2
Projets	Module				3
	Nature	СМ	TD	TP	Crédits
Sciences de l'information et société numérique (SIS)	Module				
Société numérique : Enjeux et Régulation	Module	10h	9h	23h	3
Enjeux Stratégiques du Numérique	Module	40h	2h	2011	4
19 Télégor munications, Apprentissage et Technologie de l'aprocations	Module	40h	4h	6h	4
Analyse Statistique de l'Information	Module	36h	8h	16h	⊿ .
Codage et Recherche de l'Information	Module	24h	OH	16h	4
Projet	Module	∠ ⊤! !		1011	2

Bio-ingénierie (BIO)

Fn bref

> Langue de cours: Anglais

Présentation

Objectifs d'apprentissage

Un espoir énorme repose sur la bioingénierie pour relever les défis sans précédent auxquels l'humanité est confrontée. Parmi ceux-ci, la santé représente une condition majeure du bien-être des populations et la demande ne peut que s'intensifier avec l'accroissement du niveau et de l'espérance de vie. Cependant, bien d'autres secteurs sont concernés. Les questions cruciales d'épuisement des ressources et de dégradation de notre espace vital ne pourront être réglées qu'en développant des procédés aussi efficaces et en harmonie avec la nature que ceux qui régissent les systèmes vivants. Ce n'est que par la compréhension de ces derniers, leur exploitation à des fins humaines et en s'en inspirant largement que nous arriverons à relever ces défis.

Bioengineering holds enormous promise for addressing the unprecedented challenges facing humanity. Among these, health represents a major condition for the well-being of populations and the demand for it will clearly intensify with the increase in the level and expectation of life. However, many other sectors are concerned. The crucial issues of resource depletion and the degradation of our living space can only be resolved by developing processes that are as efficient and in harmony with nature as those that govern living systems. It is only by understanding these systems, using them for human purposes and drawing inspiration from them that we will be able to meet these challenges.

The one-semester bioengineering training program of École Centrale de Marseille aims at broadening students' horizon by interdisciplinary teachings in order to be able to approach "life" all its main aspects.

The courses will be given in English. This track is shared with international Centrale Marseille's students from MscT Complex Systems Engineering - BioEngineering track.

Description du programme

A complete description of this track can be downloaded here in **Z** French or in **Z** English.

Objectif de Développement Durable

Accès à la santé

Recours aux énergies renouvelables

Accès à l'eau salubre et l'assainissement

Vie aquatique

Accès à une éducation de qualité

Vie terrestre

Total des heures 0h

Liste des enseignements

	Nature	СМ	TD	TP	Credits
Les briques du vivant	Module	70h		4h	6
Imagerie et Théraphies par Ondes	Module	53h		17h	5
Biotechnologies et Thérapies Chimiques	Module	58h		10h	5
Planète BIO	Module	28h			5

Les briques du vivant

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Non

Objectifs d'apprentissage

La complexité de la matière vivante émerge de son organisation multi-échelle et c'est l'objet de cette Unité d'Enseignement que d'en donner une vision globale. Une approche pluridisciplinaire est indispensable pour y arriver. Aborder l'étude d'un objet, d'un matériau, d'un système, avec la vision de disciplines différentes montre tout l'intérêt d'une formation pluridisciplinaire pour les nouveaux défis scientifiques, technologiques et sociétaux.

Description du programme

L'objet de cette Unité d'Enseignement est le matériau biologique dans une vision multi-échelle, de l'échelle nano moléculaire et cellulaire jusqu'à l'échelle humaine, en passant par l'échelle mésoscopique de la circulation des biofluides et macroscopique des tissus. Elle se décompose ainsi en quatre parties :

- « Briques de base » qui décrit la matière vivante à l'échelle moléculaire et cellulaire ;
- « Matière molle et microfluidique » qui en intégrant l'organisation moléculaire dans une approche de thermodynamique statistique conduit à une description de champ moyen et finalement de milieu matériel continu ;

- « Modélisation des tissus » qui intègre les données structurelles des tissus de l'échelle microscopique à l'échelle humaine, dans une description de biomécanique des milieux continus ;
- « Anatomie et pathologie » qui décrit le fonctionnement et les dysfonctionnements biomécaniques du corps humain.

Contenu détaillé des enseignements dans la documentation en ligne sur le site web de l'école (en d'français et en d'anglais).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Les disciplines impliquées sont la chimie, la physique, la mécanique, ainsi que la modélisation mathématique et numérique. Cet enseignement complète les autres enseignements portant sur la structure de la matière et son comportement. La matière vivante est largement reconnue aujourd'hui comme une source d'inspiration prometteuse. On parle généralement de bio mimétisme ou encore de matériaux bio inspirés.

Modalité de contrôle des connaissances

CC dans chacune des guatre parties, comptant à parts égales pour la note de l'UE.

Bibliographie

- 1. Alberts, A. D. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, Garland Science, 2015.
 - J. N. Israelachvili, Intermolecular and interface forces, Academic press, 2011.
 - S. C. Cowin, Tissue mechanics, Springer, 2007.
 - A. I. Kapandji, Anatomie fonctionnelle, Maloine, 2018.

Equipe pédagogique

- * Karine ALVAREZ
- * Anaïs BAUDOT
- * Stéphane BETZI
- * Stéphane CANAAN
- * Alexandre MARTINEZ
- * Thien VU MANH
- * Marc JAEGER
- * Jean-Marie ROSSI
- * Stéphane BOURGEOIS

* Serge MESURE

Objectif de Développement Durable

Accès à la santé

Accès à une éducation de qualité

Vie aquatique

Vie terrestre

Total des heures		74h
Nouvelles heures d'enseignement	Cours Magistral	70h
Nouvelles heures d'enseignement	Travaux Pratiques	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Marc Jaeger

marc.jaeger@centrale-marseille.fr

Imagerie et Théraphies par Ondes

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Cours de Tronc Commun de première année et premier semestre de 2e année de l'École Centrale Méditerranée

Objectifs d'apprentissage

A l'issue de cette Unité d'Enseignement, les élèves auront une bonne connaissance des fondements et des possibilités offertes par l'imagerie médicale (de l'interaction ondes-matière au traitement des données). Compréhension approfondie, d'une part des propriétés physiologiques et des métabolismes ciblés par les différentes modalités, et d'autre part des techniques numériques mises en œuvre, propres à chaque modalité. Ce socle de compétences permettra de répondre efficacement aux besoins diagnostiques et thérapeutiques, avec une appréciation des contraintes médicales.

Description du programme

L'imagerie médicale fait l'objet d'enjeux multiples. Dans le domaine de la santé, l'observation non invasive du corps apporte des informations morphologiques, métaboliques et fonctionnelles, conduisant à des progrès importants en termes de soins et de santé (dépistage) publique. D'un point de vue industriel, le développement de nouvelles modalités a pour conséquence la fabrication d'appareillages de plus en plus sophistiqués et à spécificité accrue. Parcourant une large dynamique (de l'échelle cellulaire à l'échelle macroscopique), nous décrivons les modèles d'interactions ondes-tissus ainsi que leur utilisation en imagerie et en thérapie. Les différentes modalités d'imagerie, des plus conventionnelles aux plus avancées, et les thérapies associées sont mises en perspective. Le traitement des images numériques est une étape clé pour l'aide au diagnostic et le contrôle thérapeutique. En particulier, sont abordées : les notions de qualité d'images, l'analyse des données, la poursuite d'objets dans des séquences et l'aide à la décision.

L'objectif est une formation sur les méthodes les plus avancées en imagerie en considérant les fondements physiques afin d'être en mesure d'offrir le meilleur potentiel d'innovation à finalité médicale. Cette Unité d'enseignement se décompose ainsi en trois parties :

- « Microscopie cellulaire et subcellulaire »;
- « Imagerie médicale et thérapie »;
- « Traitement des images ».

Contenu détaillé des enseignements dans la documentation en ligne sur le site web de l'école (en 🗹 français et en 🗹 anglais).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Cet enseignement permet d'élargir les concepts de base de physique, de mécanique ou de traitement d'images à l'imagerie et la thérapie par ondes (appliqués au vivant). Ces techniques passent par l'analyse de l'information issue de l'interaction entre les ondes et la matière afin d'obtenir une image et/ou un effet sur la matière utile pour la thérapie puis au traitement de l'information utile pour le diagnostic, la reconstruction ou le suivi. Les étudiants pourront analyser le contexte socio-économique lié à l'imagerie médicale et à la thérapie grâce à la présentation des enjeux liés à chaque technique et ainsi mesurer le potentiel d'innovation. Des travaux pratiques permettront par ailleurs de concrétiser ces différentes notions.

Modalité de contrôle des connaissances

CC dans chaque partie, contribuant respectivement à 30%, 35% et 35%

Bibliographie

- 1. Locquin, M. Langeron, Handbook of Microscopy, Butterworth-Heinemann, 1983.
 - V. Tuchin, Tissue optics: Light scattering methods and instruments for medical diagnosis, SPIE Press, 2015.
 - J. Beutel, R Van Metter, H. Kundel, Handbook of Medical Imaging: Physics and Psychophysics, SPIE Press, 2000.
 - I.N. Bankman, Handbook of Medical Image Processing and Analysis, Academic Press, 2009.

Equipe pédagogique

- * Hervé RIGNEAULT
- * Julien FADE
- * Carine GUIVIER-CURIEN
- * Philippe LASAYGUES
- * Serge MENSAH
- * Salah BOURENNANE
- * Caroline FOSSATTI
- * Thierry GAIDON

Objectif de Développement Durable

Accès à une éducation de qualité

Accès à la santé

Vie aquatique

Vie terrestre

Total des heures		70h
Nouvelles heures d'enseignement	Cours Magistral	53h
Nouvelles heures d'enseignement	Travaux Pratiques	17h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Julien Fade

■ julien.fade@centrale-marseille.fr

Biotechnologies et Thérapies Chimiques

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Cours de Tronc Commun de première année et premier semestre de 2e année de l'École Centrale Méditerranée

Objectifs d'apprentissage

Le développement d'un médicament est un chantier à paramètres multiples qui comprend des contraintes réglementaires, temporelles, sociétales et une composante d'innovation. Il y a en outre un cahier des charges complexe à intégrer (efficacité, disponibilité, innocuité, etc.). C'est donc un domaine par excellence ou les solutions émergent de la capacité à mobiliser des compétences complémentaires et à aborder un problème multi-paramètres. L'étude du cycle de développement et de vie d'un composé pharmaceutique illustre la pluridisciplinarité requise dans le secteur et montre tout l'intérêt d'une formation généraliste pour les nouveaux défis scientifiques, technologiques et sociétaux.

Description du programme

Le cœur de cette Unité d'Enseignement concerne la création et la mise sur le marché de nouveaux principes actifs et dispositifs biotechnologiques. Il s'agit de stimuler la capacité à inventer des solutions créatives, ingénieuses, originales au travers de ce qui a été produit dans le passé et est développé aujourd'hui. En outre, une grande partie de l'enseignement est consacrée à la bio-informatique et aux biotechnologies qui visent à utiliser génomes, biomolécules, cellules et tissus pour créer des dispositifs innovants répondant à des challenges humains du futur. Cette Unité d'Enseignement se décompose ainsi en quatre parties :

« Stratégie thérapeutique moléculaire »;

- « Procédés pharmaceutiques »;
- « Bio-informatique »;
- « Biochimie inorganique et chimie bio inspirée ».

Contenu détaillé des enseignements dans la documentation en ligne sur le site web de l'école (en d'français et en d'anglais).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Cette Unité d'Enseignement mobilise les connaissances en génie des procédés et chimie pour les aspects pharmaceutiques et pour l'étude bio organique des systèmes vivants conduisant à une chimie biomimétique. Ils mobilisent aussi des compétences en mathématiques discrètes et informatique fondamentale pour la bio-informatique. Les connaissances apportées complètent celles déjà acquises dans ces disciplines, et sont utiles en soi. Le domaine en lui-même est propice à stimuler l'imagination puisqu'il est en prise directe avec le monde du vivant, qui de par sa créativité longue de plusieurs millions d'années d'évolution est la plus riche des sources d'inspiration pour l'homme.

Modalité de contrôle des connaissances

CC dans chaque partie, contribuant respectivement à 35%, 15%, 30% et 20%

Bibliographie

Ng. Rick, Drugs: from discovery to approval, Wiley-Liss, 2004.

- J. W. Mullin, Crystallization, Butterworth Heineman, 2001.
- O. Papini, H. Prade, L'intelligence artificielle : frontières et applications, Cépaduès, 2014.
- J. E. Huhey, E. A. Keiter, R. L. Keiter, Inorganique Chemistry, De Boeck, 2004.

Equipe pédagogique

- * Karine ALVAREZ
- * Stéphane BETZI
- * Stéphane CANAAN
- * Philippe ROCHE
- * Nelson IBASETA
- * Paul VILLOUTREIX

- * Élisabeth REMY
- * Thien VU MANH
- Alexandre MARTINEZ

Objectif de Développement Durable

Accès à la santé

Consommation et production responsables

Vie terrestre

Accès à l'eau salubre et l'assainissement

Recours aux énergies renouvelables

Accès à une éducation de qualité

Vie aquatique

Total des heures		68h
Nouvelles heures d'enseignement	Cours Magistral	58h
Nouvelles heures d'enseignement	Travaux Pratiques	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alexandre Martinez

■ alexandre.martinez@centrale-marseille.fr

Planète BIO

Fn bref

> Langue de cours: Anglais, Français

Présentation

Prérequis

Cours de Tronc Commun de première année et premier semestre de 2e année de l'École Centrale Méditerranée

Objectifs d'apprentissage

L'objet de cette Unité d'Enseignement est de permettre aux étudiants de sortir du cadre de l'école pour s'ouvrir plus largement au secteur d'activité. Le S8 BIO ingénierie leur offre un aperçu très large en allant à la rencontre de la communauté biologie et santé d'Aix-Marseille. De nombreuses opportunités d'interagir avec le secteur sont offertes dans le cadre de cette UE. La réalisation d'un projet est également possible mais laissée à l'initiative des élèves eux-mêmes.

Description du programme

La bio ingénierie est l'exemple par excellence d'un secteur d'activité qui se nourrit en permanence des découvertes scientifiques et technologiques issues des laboratoires de recherche. Avec un effectif de chercheurs et de cliniciens exceptionnel, avec une richesse de laboratoires permettant de couvrir un très large spectre, le site d'Aix-Marseille est idéal pour comprendre les enjeux de ce secteur, pour ceux qui acceptent de sortir des murs de l'école. Le programme est réactualisé chaque année durant l'automne, éventuellement en concertation avec les étudiants qui se manifestent.

Contenu détaillé des enseignements dans la documentation en ligne sur le site web de l'école (en 🗹 français et en 🗹 anglais).

Compétences et connaissances scientifiques et techniques visées dans la discipline

L'objectif est l'ouverture au secteur socio-économique en offrant la possibilité aux étudiants d'interagir avec le milieu professionnel. Son positionnement est donc hors des frontières de la formation académique habituelle, même si la formation pluridisciplinaire est la base sur laquelle s'appuyer pour construire des compétences plus complexes de savoir être.

Modalité de contrôle des connaissances

Porte sur la capacité à communiquer auprès des médias.

La forme peut être réfléchie en concertation avec les élèves qui en manifestent l'intérêt en amont du semestre. Ce travail est accompagné par un professionnel des médias. Une formation de base est proposée en début de semestre, aboutissant à une feuille de route. Le débriefing se tient en fin de semestre, avec un bilan à mi-parcours.

Equipe pédagogique

- * Marc JAEGER
- * Julien FADE
- * Sylvain JAEGER

Objectif de Développement Durable

Accès à la santé

Recours aux énergies renouvelables

Accès à une éducation de qualité

Vie aquatique

Lutte contre la faim

Vie terrestre

Total des heuresNouvelles heures d'enseignement
Nouvelles heures d'enseignement

Cours Magistral
Apprentissage en Autonomie

28h 20h

48h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Julien Fade

≥ julien.fade@centrale-marseille.fr

Dynamique - Mutations - Crises (DMC)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Modélisation mathématique et statistique des systèmes complexes	Module	25h	18h	21h	5
Gestion des crises : applications physiques et chimiques	Module	23h	18h	4h	4
Optimisation et application au contrôle	Module	14h	10h	14h	3
Instabilités dynamiques et transport chaotique	Module	10h	6h	22h	3
Modélisation économique : croissance et développement durable	Module	36h	4h		3
Au-delà du modèle	Module	15h	5h	10h	3

Modélisation mathématique et statistique des systèmes complexes

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Mathématiques: probabilités/statistiques

Objectifs d'apprentissage

- Connaître la théorie des systèmes dynamiques en temps discret et continu.
- Connaître la théorie de la stabilité.
- Connaître la théorie des équations différentielles.
- Connaître la théorie de l'estimation et de la détection pour les phénomènes extrêmes.
- Être capable de choisir les outils adéquats à la modélisation d'un phénomène..
- Être capable de mettre en œuvre un modèle avec évaluation des paramètres et d'illustrer les différents comportements à travers des simulations.
- Savoir utiliser ou développer des méthodes numériques adaptées pour résoudre efficacement un problème.
- Maîtriser les outils informatiques nécessaires à la mise en œuvre numérique des modèles.

Description du programme

Modélisation mathématique de systèmes complexes I et II (30 h : 9-7-14-0)

Modèles discrets, systèmes dynamiques continus, méthodes numériques associées ; équations aux dérivées partielles, méthodes numériques et exemples d'applications en biologie.

Le système de Lorenz : un modèle simple en météorologie (15 h : 10-5-0-0)

Introduction générale (la météorologie, la découverte de Lorenz, la convection de Rayleigh-Bénard et le système de Lorenz) ; instabilité de Rayleigh-Bénard (théorie de la stabilité linéaire ; équations fondamentales et approximation de Boussinesq ; écoulement de base et linéarisation des équations ; équations sans dimension : nombres de Rayleigh et de Prandtl ; transition de la conduction à la convection) ; chaos (notion d'attracteurs et sensibilité aux conditions initiales ; étude du système de Lorenz. Simulations numériques du système de Lorenz).

Valeurs extrêmes (19 h: 6-6-7-0)

Valeurs extrêmes, statistiques d'ordre, domaines d'attraction d'une distribution de valeurs extrêmes, estimateur de Hill, estimateur de Pickands, queues de distribution, comportement des excès, loi de Pareto, loi de Gumbel, loi de Weibull. Utilisation des logiciels R ou Matlab.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Compétence 2 COMPLEXITÉ

- Définit un problème dans un système simple, le positionne dans son environnement et propose un modèle pertinent.
- Comprend et utilise un modèle complexe donné (multi-composantes et multidimensionnel)
- Modélise un système multidimensionnel à composants interdépendants et/ou non déterministes. Pose les hypothèses et conditions de validité.
- Expérimente le caractère imprédictible d'un système complexe (perturbations, risques potentiels...)

Modalité de contrôle des connaissances

DS1: Systèmes dynamiques 25 %

CC1: Systèmes dynamiques (devoir maison) 15 %

CC2: Systèmes dynamiques (TP) 10 %

DS2: Modèle de Lorenz 17 %

CC3: Modèle de Lorenz (TP) 8 %

CC4 : Valeurs extrêmes (interrogations) 25 %

Bibliographie

Polycopié de cours en anglais

Equipe pédagogique

- Malek Abid (Aix-Marseille Université)
- Guillaume Chiavassa
- Christophe Pouet
- Frédéric Schwander

Objectif de Développement Durable

Lutte contre le changement climatique

Total des heures		64h
Nouvelles heures d'enseignement	Cours Magistral	25h
Nouvelles heures d'enseignement	Travaux Dirigés	18h
Nouvelles heures d'enseignement	Travaux Pratiques	21h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Christophe Pouet

□ christophe.pouet@centrale-marseille.fr

Gestion des crises : applications physiques et chimiques

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Physique statistique Chimie - Génie des procédés

Objectifs d'apprentissage

Savoir quand et comment on doit utiliser les techniques et sciences de l'aléatoire, des statistiques et de la complexité. Illustrer ces notions autour d'applications de différentes natures.

Ouvrir l'esprit, avoir une certaine maîtrise des concepts des sciences de l'information, de la physique, de la chimie et qui répondent aux problèmes posés. Faire le lien avec les outils mathématiques associés. Développer l'envie d'être acteur du domaine. Développer une vision globale.

Description du programme

Volet 1: Statistique, Information et Physique des systèmes complexes. (CM 20 - TD 8 - TP 0 - TA 4)

Partie A « Statistique, Information »:

- Rappels sur les probabilités et la théorie statistique classique,

- Théorie statistique du risque pour la décision ou l'estimation,
- Eléments de théorie de l'information,
- Complexité et applications.

Partie B « Physique des systèmes complexes »:

- Transitions de phase, modèle de Landau et catastrophes,
- Percolation et fractales,
- Systèmes physiques complexes et application en traitement de l'information.

Volet 2: Modélisation de procédés chimiques et biologiques (CM 3 - TD 10 - TP 4)

Lors du dimensionnement d'installations industrielles et lors de l'évaluation de leurs performances, il est nécessaire de disposer de modèles pertinents, faisant le compromis juste entre précision et simplicité. Hélas, les procédés chimiques et biologiques sont souvent soumis à des processus non-linéaires. A l'aide de plusieurs études de cas, on illustrera la proposition de simplifications judicieuses et la résolution des systèmes d'équations obtenus (ODE, DAE, etc).

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Comprendre l'utilité des outils statistiques pour l'analyse des données issues de systèmes industriels, physiques ou pour le management (C5)
- Comprendre les facteurs essentiels dans les systèmes complexes (C2)
- Sélectionne une méthode de résolution pertinente et porte un regard critique sur le résultat (C2)

Modalité de contrôle des connaissances

Volet 1 - Contrôle continu 2 Comptes rendus 2 x 35 % = 70%

Volet 2 - Contrôle continu Compte-rendu de travail personnel 30%

Bibliographie

Ph. Réfrégier « Noise theory and application to physics » - Springer 2003.

P.H. Garthwaite, I.T. Jolliffe and B. Jones « Statistical Inference » - Prentice Hall 1995.

T.M. Cover and J.A. Thomas « Elements of information theory» - Wiley 2006.

D. Stauffer, H.E. Stanley, A. Lesne « Cours de Physique : De Newton à Mandelbrot » - Springer 1999.

Equipe pédagogique

- Nelson Ibaseta
- Philippe Réfrégier

Total des heures		49h
Nouvelles heures d'enseignement	Cours Magistral	23h
Nouvelles heures d'enseignement	Travaux Dirigés	18h
Nouvelles heures d'enseignement	Travaux Pratiques	4h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Frédéric Schwander

■ frederic.schwander@centrale-marseille.fr

Optimisation et application au contrôle

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Mathématiques : calcul différentiel

Objectifs d'apprentissage

Les méthodes d'optimisation sont appliquées dans un grand nombre de domaines liés aux sciences de l'ingénieur, que ce soit comme simples outils d'analyse numérique ou d'un point de vue dynamique, tels les problèmes de commande optimale.

L'objectif de ce cours est de présenter les aspects théoriques de l'optimisation statique sans contrainte, puis avec contraintes (lagrangien, KKT, points selles et dualité), ainsi que les principaux algorithmes d'optimisation (le gradient, le gradient conjugué, Newton, quasi-Newton...). Les aspects stochastiques de l'optimisation seront abordés avec l'utilisation du recuit-simulé, de l'entropie croisée.

Cette première partie a pour but d'introduire les notions d'optimisation statique, en vue de les étendre à l'optimisation dynamique et aux problèmes de contrôle optimal dans une seconde partie. Cette dernière sera dédiée à l'équation d'Hamilton, au principe du minimum de Pontryagin, au principe d'optimalité de Bellman. Cela conduira à l'équation de Riccati et la résolution des équations algébro-différentielles. Différents exemples illustratifs seront traités.

Description du programme

Le cours est composé de deux parties.

La partie I porte sur l'optimisation statique, elle vise à acquérir les notions suivantes :

– notions mathématiques, définition et choix du critère, optimisation sans contrainte, définition des contraintes et optimisation avec contraintes, algorithmes / méthodes numériques, aspects stochastiques, vers l'identification.

La partie II porte sur l'optimisation dynamique et le contrôle optimal ; elle vise à acquérir les notions suivantes :

– choix du critère, contraintes dynamiques, équation d'Hamilton, principe d'optimalité de Pontryagin, programmation dynamique et optimalité de Bellman, équation de Riccati, vers le contrôle optimal.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Le contrôle continu vise l'acquisition des compétences suivantes :

- C1 Thème 1 : niveau intermédiaire
- C1 Thème 2 : niveau novice/intermédiaire

L'évaluation et le contrôle continu visent l'acquisition des compétences :

- C2 Thème 1 : niveau compétent
- C2 Thème 2 : niveau intermédiaire

Modalité de contrôle des connaissances

Les MCC sont décomposées en deux parties :

- 66 % évaluation écrite de 2 h sans document, calculatrice autorisée
- 34 % compte rendu des deux TP (optimisation statique et optimisation dynamique)

Bibliographie

- G. Allaire et S.M. Kaber, Algèbre linéaire numérique, Ellipses, 2002
- P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Dunod, 1998
- M. Bergounioux, Optimisation et contrôle des systèmes linéaires, Dunod, 2001

– B. d'Andréa-Novel et M. Cohen de Lara, Cours d'automatique, commande linéaire des systèmes dynamiques, École des Mines de Paris, 2000

Equipe pédagogique

- * Guillaume Graton
- * Samia Mellah
- * Dima El Jamal

Total des heures		38h
Nouvelles heures d'enseignement	Cours Magistral	14h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Travaux Pratiques	14h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Guillaume Graton

guillaume.graton@centrale-marseille.fr

Instabilités dynamiques et transport chaotique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Mécanique

Modélisation mathématique des systèmes complexes

Objectifs d'apprentissage

- Savoir appliquer les notions abordées dans le cours de « Modélisation mathématique de

systèmes complexes » à des exemples de systèmes dynamiques issus de la mécanique des

fluides et des solides.

- Connaître le concept d'instabilité, identifier son apparition à travers plusieurs applications.
- Connaître les propriétés d'un système hamiltonien, identifier les points critiques dans l'espace des phases, appréhender le chaos déterministe dans un système hamiltonien, appréhender le transport dans un système chaotique.

Description du programme

Partant des équations générales de la mécanique des milieux continus (MMC, 1A), on établit les équations du mouvement du système considéré, et on discrétise en espace pour revenir à un système dynamique, généralement de petite dimension. On décrit

les instabilités et leurs conséquences en utilisant les notions de base vues dans le cours « Modélisation mathématique de systèmes complexes».

Quelques exemples issus de la mécanique des solides (16 h)

- Effondrement d'une structure par flambement.
- Crissement d'un disque de frein ou d'embrayage.
- Auto-oscillations dans les instruments de musiques (cordes frottées, vents, cuivres).
- Instabilité aéroélastique d'une aile, d'un pont ; instabilité au sol d'un hélicoptère.

Quelques exemples issus de la mécanique des fluides (22 h)

On étudie le comportement d'un système hamiltonien chaotique et les phénomènes de transport. La notion de transport est illustrée par des applications numériques exploitant l'analogie entre les systèmes hamiltoniens et les fluides incompressibles.

- Fluides neutres : dynamique et mélange dans des fluides
- Plasmas de fusion (dynamique et chaos des lignes magnétiques, diffusion de particules par

dérive ExB).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Maîtrise de la complexité et des systèmes.

L'UE permet de développer les outils théoriques nécessaires à la compréhension des instabilités des systèmes chaotiques. Elle contribue à permettre aux élèves d'appréhender la richesse de comportements d'un système dynamique, à leur apporter les outils pour les décrire à travers des applications issues de la mécanique.

Modalité de contrôle des connaissances

- CC1 : Instabilités dynamiques dans les milieux continus (TP), 40 %
- CC2: Transport chaotique et stratégies de contrôle: applications aux fluides (TP), 30 %

- DS1: Transport chaotique, 30 %

Bibliographie

Polycopié de cours.

Equipe pédagogique

- * Guido Ciraolo (CEA)
- * Bruno Cochelin
- * Emmanuelle Sarrouy
- * Frédéric Schwander

Total des heures		38h
Nouvelles heures d'enseignement	Cours Magistral	10h
Nouvelles heures d'enseignement	Travaux Dirigés	6h
Nouvelles heures d'enseignement	Travaux Pratiques	22h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Frédéric Schwander

■ frederic.schwander@centrale-marseille.fr

Modélisation économique : croissance et développement durable

En bref

> Langue de cours: Français

Présentation

Prérequis

Modélisation mathématique

Optimisation dynamique

Objectifs d'apprentissage

Partie I : Économie de l'environnement, des ressources, et des populations

Ce cours propose une introduction aux problématiques de l'économie de l'environnement et des ressources naturelles. En mobilisant les outils d'optimisation dynamique étudiés dans les autres cours du parcours, nous parcourons un ensemble de problématiques usuelles du domaine : le problème du gestionnaire d'une mine, modèles proies-prédateurs, modèles de pêcheries. En outre, une partie plus « statique » du cours s'intéresse au besoin de régulation (et aux outils disponibles) pour corriger les externalités.

Partie II: Croissance et crises économiques

Ce cours vise à présenter aux étudiants les principaux facteurs expliquant la croissance économique d'un pays sur le long terme. La présentation de ces facteurs se fait au travers d'évidences empiriques et de faits stylisés, qui servent à établir les éléments de réflexions mobilisés lors de la modélisation théorique de la croissance économique.

Description du programme

Partie I : Économie de l'environnement et des ressources

- I. Introduction
- II. La gestion optimale d'un stock de ressources non renouvelables
- III. Modèles de populations
- IV. Dynamique des pêcheries
- V. Besoin et instruments des politiques environnementales
- VI. Gestion d'un polluant stock, analyse théorique et numérique
- VII. Un modèle épidémiologique avec prise de décision économique : le modèle SIR-Macro

Partie II: Croissance et crises économiques

- I. Introduction : les régularités empiriques et les faits stylisés de la croissance économique
- II. Les modèles de croissance exogènes
- III. Introduction aux modèles de croissance endogène

Compétences et connaissances scientifiques et techniques visées dans la discipline

Comprendre les moyens d'action pour une bonne gestion des ressources naturelles à l'aide des outils d'optimisation dynamique

Compréhension des mécanismes permettant la croissance économique, et des effets de celle-ci.

Modalité de contrôle des connaissances

CC: devoir maison 100 %

L'évaluation de l'UE est constituée d'un projet en groupe. Une partie du projet se rapproche d'un DM faisant la synthèse des deux cours composant l'UE. La deuxième partie du projet invite les étudiants à poursuivre le DM par le développement de mini-travaux de recherche.

Bibliographie

Hotelling, H. (1931). The Economics of Exhaustible Resources. Journal of Political Economy, 39(2), 137#175. https://doi.org/10.1086/254195

Shone, R. (2003). Economic Dynamics: Phase Diagrams and their Economic Application (2e éd.). Cambridge University Press.

Sala-i-Martin, X., Barro, R. J., (2004). Economic Growth, Second Edition. Royaume-Uni: MIT Press.

Equipe pédagogique

- * Nicolas Abad (Université de Rouen-Normandie)
- * Nicolas Clootens

Objectif de Développement Durable

Éradication de la pauvreté

Consommation et production responsables

Lutte contre le changement climatique

Vie aquatique

Vie terrestre

Total des heures		40h
Cours	Cours Magistral	36h
Exercices	Travaux Dirigés	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Frédéric Schwander

■ frederic.schwander@centrale-marseille.fr

Au-delà du modèle

En bref

> Langue de cours: Français

Présentation

Prérequis

Mathématiques : probabilités/statistiques

Objectifs d'apprentissage

- Comprendre et analyser les limites inhérentes à chaque modèle.
- Être capable de détecter les situations dans lesquelles un modèle ne semble plus être adapté.
- Savoir analyser et maîtriser un système complexe sans avoir recours à un modèle

Au niveau plus général, cette UE a pour but de fournir aux élèves les compétences et connaissances leur permettant de prendre conscience de la limite de la modélisation des systèmes complexes.

Description du programme

Modélisation de tendance, quantification des incertitudes et analyse de sensibilité (10 h : 5-3-2-0)

- Régression multiple : méthodes linéaires et non paramétriques
- Modélisation des tendances : modèles Holt-Winters, ARMA, ARIMA, ...

- Quantification des incertitudes : méthodes paramétriques, non paramétriques, les petits échantillons (évocation rapide des méthodes Bayésiennes, Wilks, ..)
- Analyse de sensibilité : méthodes locales, méthodes globales (GSA) monotones, non monotones, qualitatives/quantitatives (screening, décomposition de la variance).

Commande floue (16 h: 6-2-8-0)

L'approche de la modélisation et de son utilisation pour contrôler un système peut s'avérer difficile à mettre en œuvre si le système est trop complexe : il s'agit donc de présenter une approche alternative et, éventuellement, de les comparer. Au vu des exemples d'applications envisagées dans le S8, on propose une approche s'appuyant sur la logique floue (absence de modèle du système complexe) pour maîtriser le comportement d'un système complexe.

Limites de la modélisation. Aspects scientifiques et techniques, philosophiques, culturels et politiques (4 h : 4-0-0-0)

Ce module a pour but de mettre en évidence – sous plusieurs aspects pluridisciplinaires – les limites de la modélisation et le caractère toujours partiel d'un modèle. Ce module est imaginé sous forme de conférences données par des experts extérieurs à l'École. Son contenu exact dépendra donc des intervenants invités.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Capacité à inventer des solutions créatives, ingénieuses, originales.
- Capacité à mobiliser une culture scientifique/technique (transdisciplinarité et/ou spécialisation).
- Capacité à comprendre et formuler le problème (hypothèses, ordres de grandeur, etc.).
- Capacité à proposer un ou plusieurs scénarios de résolution.

Modalité de contrôle des connaissances

CC1: Modélisation de tendances (projet) 40 %

CC2: Commande floue (compte rendu) 30 %

CC3: Commande floue (programme) 30 %

Bibliographie

Polycopiés selon intervenant

Equipe pédagogique

- * Alain Kilidjian
- * Abdelhazize CHEBBOUBI (CEA)

Total des heures		30h
Nouvelles heures d'enseignement	Cours Magistral	15h
Nouvelles heures d'enseignement	Travaux Dirigés	5h
Nouvelles heures d'enseignement	Travaux Pratiques	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alain Kilidjian

■ alain.kilidjian@centrale-marseille.fr

Environnement: management et technologies (ENV)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Management environnemental	Module	32h	6h		3
Economie circulaire	Module	25h	12h	12h	4
Chimie durable	Module	28h	6h	8h	4
Effluents et pollutions	Module	26h	14h	4h	4
Surveillance de la qualité environnementale	Module	36h	8h	16h	4
Projet	Module				2

Management environnemental

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Il est attendu que l'étudiant connaisse les bases de la science économique telles que couvertes par le cours de 1A.

Objectifs d'apprentissage

Le management environnemental s'inscrit dans une perspective de développement durable. L'UE intègre au niveau de l'entreprise les composantes techniques, réglementaires, comportementales et économiques au niveau de l'entreprise et positionne le rôle et les missions de l'ingénieur. Elle est en lien fort avec l'UE sur l'économie circulaire. Pour ce qui est des aspects réglementaires, on s'intéresse en particulier à la responsabilité sociétale (ou sociale) des entreprises (RSE) et à la norme ISO 14000, qui sont les piliers du management environnemental. Les enjeux économiques sont abordés sous l'angle de la science économique appliquée à l'économie de l'environnement et au développement durable (afin de, par exemple, analyser les mécanismes économiques, comprendre l'évolution d'une société face à une rareté des ressources, anticiper les effets des politiques environnementales...).

Description du programme

La partie sur le management et les réglementations a pour objectif de faire comprendre et intégrer au quotidien la prise en compte de l'environnement indispensable à tout responsable dans une entreprise, dans ses composantes techniques, réglementaires, comportementales et économiques. L'objectif étant d'être en capacité de hiérarchiser les principaux enjeux environnementaux pour une entreprise, de construire des démarches environnementales et de réaliser des audits environnementaux. Le but étant d'être en mesure de construire, de mettre en œuvre et d'améliorer un système de management environnemental.

La partie de l'UE sur l'économie de l'environnement s'articule autour de cinq points principaux : introduction à l'économie de l'environnement ; intégration des enjeux environnementaux dans la prise de décision ; évaluation des politiques publiques et mise en place d'indicateurs et de la sensibilité du consommateur aux enjeux environnementaux ; étude des rapports de développement durable et présentation des travaux (ce travail collectif a pour but d'étudier la politique de développement durable de quelques grandes entreprises françaises, avec une synthèse à l'oral en cours de 15 min et un rapport écrit à rendre au dernier cours). Un devoir sur table complète cette évaluation.

Ces cours sont complétés par un cycle de conférences fait par des spécialistes dans leur domaine.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1: Innovation scientifique et technique
- C2 : Maîtrise de la complexité et des systèmes
- C3: Direction de programme
- C5: Vision stratégique
- Savoir-faire une analyse ou un diagnostic d'une entreprise par rapport aux problèmes de management environnemental (C1 + C2 + C3 + C5)

Être conscient et bien au fait des principales contraintes réglementaires liées au management environnemental (C1 + C2 + C3 + C5)

Modalité de contrôle des connaissances

Projet 50% + Devoir sur table 50%

Bibliographie

- M.-P. Grevêche et L. Vaute, Au cœur de l'ISO 14001:2015 : Le système de management environnemental au centre de la stratégie, AFNOR (2015)
- 1. Abdelmalki et P. Mundler, Économie de l'environnement et du développement durable, De Boeck (2015)
- T. Tietenberg et coll., Économie de l'environnement et du développement durable,

PEARSON (2013) - Articles dans la Revue des Techniques de l'Ingénieur

Equipe pédagogique

* N.Clootens

* Intervenants extérieurs

Objectif de Développement Durable

Recours aux énergies renouvelables

Vie aquatique

Consommation et production responsables

Total des heures		42h
Nouvelles heures d'enseignement	Cours Magistral	32h
Nouvelles heures d'enseignement	Travaux Dirigés	6h
Nouvelles heures d'enseignement	Autres	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nicolas Clootens

■ nicolas.clootens@centrale-marseille.fr

Economie circulaire

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'UE s'appuie sur chimie durable (outils technologiques) et management de l'environnement (outils managériaux), elle apporte les outils d'éco-conception, l'ensemble permettant de transformer les déchets en nouvelles ressources, et au-delà de construire l'écologie industrielle. C'est vraiment la tendance actuelle de l'économie.

Cette UE fait intervenir des compétences transversales dans la formation de l'ingénieur ECM. Les différentes disciplines concernées sont le génie des procédés, le génie industriel et la chimie, ainsi que les méthodes d'analyse du cycle de vie (ACV) qui se sont beaucoup développées depuis quelques années .

L'objectif principal est de comprendre les enjeux environnementaux, sociétaux et économiques liés aux industries qui transforment les ressources en produits.

Description du programme

– Découvrir l'outil "bilan carbone" de l'ADEME, outil d'évaluation des émissions de Gaz à Effet de Serre (GES) d'une entreprise ou d'un site et également, outil d'aide pour définir une stratégie en matière de management énergétique en vue de faire des économies au niveau des dépenses énergétiques.

- Connaître la structure multi critères, multi étapes d'une démarche d'éco conception (suivant la norme française du même nom) et les contraintes difficiles que rajoute la prise en compte de l'environnement dans la conception technico-économique habituelle.
- Découvrir la méthode ASIT qui est une extraction appliquée et abordable développée plus récemment par Roni Horowitz à partir des principes TRIZ.
- Connaître la méthode d'évaluation normalisée « Analyse de Cycle de Vie » des impacts d'un système industriel sur l'environnement.
- Passer d'une chaîne de transformation ressource-produit-déchet à des procédés dans lesquels les déchets constituent de nouvelles ressources est un des grands enjeux de l'industrie de transformation du XXIème siècle.
- Dans la partie valoriser, une approche globale des procédés de transformation de la matière permet de comprendre l'intégration des filières et apporte des éléments de choix des différents modes de recyclage ou valorisation des effluents ou déchets. Des exemples industriels de valorisation des déchets ouvrent des perspectives de chimie durable et d'écologie industrielle.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1: Innovation scientifique et technique

En lien avec les enseignements des autres UE de ce parcours S8, savoir poser un diagnostic pour ensuite proposer des processus de fabrication ou de valorisation/traitement des déchets permettant d'établir un cycle plus vertueux allant dans le sens de l'économie circulaire (C1)

- C2 : Maîtrise de la complexité et des systèmes :
- Maîtriser les méthodes d'évaluation de l'impact environnemental d'un processus ou d'une filière de fabrication ou de conception (C2)
- Savoir interpréter les résultats de telles analyses et trouver les étapes ou procédés susceptibles d'améliorations significatives (C2)
- Savoir modéliser et analyser un processus ou une filière de fabrication ou de conception (C2)

Modalité de contrôle des connaissances

Écoconception Contrôle continu 30 %

Analyse de cycle de vie Contrôle continu 30 %

Symbioses industrielles Projet en binôme 40 %

Bibliographie

Nombreux articles dans la Revue des Techniques de l'Ingénieur

Equipe pédagogique

- * Jalain (ECM)
- * Intervenants extérieurs

Total des heures		53h
Nouvelles heures d'enseignement	Cours Magistral	25h
Nouvelles heures d'enseignement	Travaux Dirigés	12h
Nouvelles heures d'enseignement	Travaux Pratiques	12h
Nouvelles heures d'enseignement	Projets	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Christian Jalain

christian.jalain@centrale-marseille.fr

Chimie durable

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Non

Objectifs d'apprentissage

La chimie durable concerne l'industrie des procédés de transformation de la matière. Ce module apporte les bases essentielles de la chimie et des procédés verts, et permet de comprendre les possibilités de recyclage et de symbioses industrielles, qui sont présentées dans l'UE « Économie circulaire ». Il s'agit donc de découvrir et de s'approprier les méthodes basées sur le développement de technologies chimiques innovantes et propres associées, axées sur la volonté de mettre en œuvre des procédés propres (moins polluants et/ou moins consommateurs en matières premières ou en énergie), mais aussi sur l'utilisation de matériaux biosourcés. La chimie durable est sous-tendue par la réglementation chimique européenne, REACH, et les notions ou principes basés sur l'écoconception et l'économie circulaire sont bien sûr en lien direct avec la chimie durable.

Description du programme

Le programme de l'UE aborde les aspects de durabilité, les 12 principes de la chimie verte, la catalyse en phase homogène et hétérogène, la biocatalyse, les nouveaux milieux réactionnels, les matières premières renouvelables, ainsi que les nouveaux concepts guidant la recherche et le développement dans ce domaine (comme le bio mimétisme).

Plus précisément, l'UE s'articule autour des thèmes suivants :

- introduction à la chimie verte, vers une économie biosourcée ?

- sûreté sanitaire et environnementale : REACH, nouvelle réglementation chimique européenne agro ressources
- réduction des quantités de matières. Solvants alternatifs
- catalyse (organocatalyse / biocatalyse / catalyse homogène)
- travaux pratiques
- procédés verts : les cellules vues comme des usines vivantes, intensification et économie d'énergie

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1: Innovation scientifique et technique
- Développement de nouveaux procédés plus économes et/ou plus efficaces, en se basant sur une connaissance pointue des principes de base
- C2 : Maîtrise de la complexité et des systèmes
- Meilleure gestion de la chaîne production, utilisation des ressources, traitement des déchets, économie circulaire

Modalité de contrôle des connaissances

- Chimie verte: évaluation, 25 %

- Chimie verte : contrôle continu, 25 %

- Chimie verte: travaux pratiques, 30 %

- Procédés verts : contrôle continu, 20 %

Bibliographie

- S. Antoniotti, Chimie vert Chimie durable, Ellipses Marketing (2013)
- J. Augé et M.-C. Scherrmann, Chimie verte: Concepts et applications, EDP Sciences/CNRS (2016)

Equipe pédagogique

- * D. Hérault
- * D. Nuel
- * P. Guichardon
- * A. Soric
- * Intervenants extérieurs

Objectif de Développement Durable

Accès à l'eau salubre et l'assainissement

Recours aux énergies renouvelables

Bâtir une infrastructure résiliente

Villes et communautés durables

Consommation et production responsables

Total des heures		42h
Nouvelles heures d'enseignement	Cours Magistral	28h
Nouvelles heures d'enseignement	Travaux Dirigés	6h
Nouvelles heures d'enseignement	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Damien Herault

■ damien.herault@centrale-marseille.fr

Effluents et pollutions

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Cours de Mécanique et de Chimie-GP de 1A

Objectifs d'apprentissage

L'UE concerne les traitements des effluents et la modélisation de leur diffusion dans l'environnement. Elle est en lien fort avec l'UE surveillance (détection et mesure des pollutions) et l'UE économie circulaire (valorisation des déchets). L'objectif de l'UE est d'avoir un large aperçu des techniques de traitement des effluents, et en particulier des eaux usées, si possible en vue de leur réutilisation d'une part, ainsi que des méthodes de suivi des pollutions en rivières.

De façon détaillée, l'UE est organisée autour des thématiques suivantes :

* Traitement des effluents : (33 h)

Traitement de l'eau

Membranes

Phytotechnologies: sols et eaux

Visite site (STEP Marseille)

* Diffusion dans l'environnement : (13 h)

Modélisation de la dispersion de polluants en rivières

Transferts de radionucléides en rivière

Description du programme

Après une introduction concernant l'eau (ressources, demandes, qualité et principaux polluants), la filière classique de traitement d'eau est présentée. Un focus articulier sera ensuite fait sur les opérations unitaires suivantes : décantation, coagulation — floculation, filtration, et séparations membranaires barométriques. La seconde partie de l'UE présente tout d'abord, en associant cours et exercices, les caractéristiques principales des écoulements en rivières ou en canaux, ainsi que différentes problématiques qui sont liées notamment aux propriétés d'érosion ou de stabilité des grains solides (en particulier les sédiments) qui constituent le fond et les berges. Ces éléments de modélisation théorique sont à la base des méthodes employées dans le modèle numérique de transferts/dispersion de radionucléides en rivières qui est ensuite présenté sous forme d'étude de cas, la partie liée à la dynamique sédimentaire jouant un rôle prépondérant pour ce type de polluants qui se fixent en grande partie sur les sédiments de taille plus petite qu'environ 50 microns.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1: Innovation scientifique et technique
- Développement de nouveaux procédés plus économes et/ou plus efficaces, en se basant sur une connaissance pointue des principes de base
- C2 : Maîtrise de la complexité et des systèmes
- Meilleure gestion de la chaîne production/traitement des déchets dans le but de se rapprocher au maximum des objectifs de développement durable et si

possible de valorisation des effluents (processus lié à l'économie circulaire).

Modalité de contrôle des connaissances

DS 1: Traiter les effluents Examen écrit 2h (50 %)

CC 1: TP GP Travaux pratiques (20%)

DS 2: Modéliser (rivières) Examen écrit 1h30 (30%)

Equipe pédagogique

- * Guichardon
- * N. Ibaseta
- * F. Anselmet (ECM)
- * Patrick Boyer (IRSN Cadarache)

Objectif de Développement Durable

Accès à l'eau salubre et l'assainissement

Vie aquatique

Total des heures		44h
Nouvelles heures d'enseignement	Cours Magistral	26h
Nouvelles heures d'enseignement	Travaux Dirigés	14h
Nouvelles heures d'enseignement	Travaux Pratiques	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nelson Ibaseta Garrido

■ nelson.ibaseta@centrale-marseille.fr

Surveillance de la qualité environnementale

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

Cours de tronc commun

Objectifs d'apprentissage

L'UE regroupe des outils de mesure de la qualité des eaux, de l'atmosphère et de l'environnement sonore. En lien avec le management de l'environnement (normes, surveillance du territoire) et effluents et pollutions propres (traitement des effluents et des pollutions et modélisation de la diffusion des pollutions).

L'objectif est de donner au futur ingénieur des méthodes et des outils pour la géo-surveillance (en milieu naturel et urbain) et la détection de pollutions, quelle que soit l'échelle d'analyse. Ces outils lui permettront de comprendre/développer l'intégralité de chaines de surveillance environnementale, qui va de l'acquisition des données par des capteurs dédiés jusqu'au traitement de l'information qui prend en compte la modélisation des phénomènes physiques. Les domaines de surveillance abordés vont de la pollution atmosphérique chimique à la prévision et la réduction du bruit en milieu urbain et à l'état des surfaces continentales (végétation) par imagerie.

Description du programme

Cette UE traite des outils de détection des indicateurs de pollution, à l'échelle locale et globale, avec les capteurs et mesures pour l'environnement et la géo-surveillance. Elle aborde également des problématiques liées à la pollution acoustique environnementale, de façon à obtenir des améliorations de l'environnement sonore (en lien avec la notion de ville silencieuse durable).

1. Capteurs et mesures pour l'environnement. (J. Bittebierre & D. Nuel)

Les mesures localisées avec des capteurs indépendants ou en réseaux permettent un suivi précis, en temps réel, sur des sites fermés ou sur de plus larges espaces. L'accent est mis sur les capteurs les plus utilisés pour des mesures localisées de précision, et sur les composants destinés à la saisie des mesures par imagerie (capteurs optiques, dont LIDAR (Radars optiques de surveillance fondés sur le laser) et caméra hyperspectrale (caméra qui fournit pour chaque point de l'image saisie la composition de son spectre), capteurs chimiques et capteurs de gaz).

2. Télédétection. (R. Marion & A. Roueff)

Méthodes de télédétection pour la géo-surveillance et la caractérisation de pollutions. Il est possible d'extraire des informations pertinentes sur l'état des végétations, des sols et des mers à partir de capteurs embarqués (multispectral, hyperspectral ou radar). Nous verrons comment fonctionne la télédétection et comment mettre en oeuvre des algorithmes pour la cartographie au travers de plusieurs exemples d'application.

3. Pollutions acoustiques. (C. Maury & D. Mazzoni)

On s'intéressera aux pollutions acoustiques en extérieur ou dans les bâtiments, en s'appuyant notamment sur la caractérisation du champ acoustique et des sources, et sur le traitement à l'aide d'écrans acoustiques. Est aussi incluse une conférence sur la technique acoustique pour la prévention des risques de stockage de CO2.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Innovation scientifique et technique

être capable de suivre le développement (notamment au niveau du traitement

informatique des données) de méthodes nouvelles ou plus performantes

- être capable d'encadrer la mise en place d'une technique de suivi dans un

contexte nouveau

- Maîtrise de la complexité et des systèmes :
- Savoir analyser un problème lié à des pollutions
- Maîtriser les méthodes expérimentales à ces types de situations de

façon à proposer une méthodes de suivi adaptée, en mettant en œuvre les

techniques de détection et de suivi les plus pertinentes

- Savoir interpréter des résultats d'expérience, et savoir identifier des

situations problématiques (pannes, bruit de fond anormaux, dysfonctionnements divers)

Modalité de contrôle des connaissances

CC1 (partie « Télédétection ») : une moyenne de comptes rendus qui contribue pour 40% de la note finale.

CC2 (partie « Capteurs »): exposé + bonus sur TD qui contribue pour 30% de la note finale.

CC3 (partie « Acoustique »): rendu de projet qui contribue pour 30% de la note finale.

Bibliographie

Georges Asch et col., Les capteurs en instrumentation industrielle, 5ème édition, Dunod, 1999

Frédéric P. Miller, Acoustique Environnementale, Alphascript Publishing, 2010

Nombreux articles dans la Revue des Techniques de l'Ingénieur

Equipe pédagogique

- * Anselmet
- J. Bittebierre
- R. Marion
- * C. Maury
- D. Mazzoni
- D. Nuel
- A. Roueff
- Intervenants extérieurs (CEA, LMA/CNRS, Atmo Sud)

Objectif de Développement Durable

Lutte contre le changement climatique

Vie terrestre

Vie aquatique

60h Total des heures

Nouvelles heures d'enseignementCours Magistral36hNouvelles heures d'enseignementTravaux Dirigés8hNouvelles heures d'enseignementTravaux Pratiques16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Antoine Roueff

■ antoine.roueff@centrale-marseille.fr

Projet

Fn bref

> Langue de cours: Anglais

Présentation

Objectifs d'apprentissage

- Mettre en oeuvre les différentes connaissances et compétences apprises au fil de la formation, qu'elles soient techniques ou organisationnelles
- Savoir aborder un problème réel et ses différentes contraintes
- Savoir compléter ses connaissances et compétences selon les besoins du projet
- Trouver ces informations au-delà du cercle habituellement mis en oeuvre à l'école
- Travailler en équipe et en interface avec un mandataire
- Structurer son travail dans le temps

Description du programme

- Différents sujets sont proposés en début de semestre (début ou mi-mars) et traités chacun par un groupe de deux à trois étudiants. Ces sujets sont des points d'intérêt pour les mondes de la recherche académique (et/ou industrielle) et l'industrie.
- L'encadrement est assuré par un ou deux enseignants ou collaborateurs extérieurs.
- Une demi-journée par semaine environ y est dédiée pendant 10 semaines (38 h en tout).
- Le projet se conclut par une soutenance et la remise d'un rapport.

Quelques exemples de sujets des années précédentes :

- Acoustic impedance of a micro-perforated plate
- Tiny Houses A new approach to the concept and the eco-responsibility of constructions
- Environmental impact of remote teaching at Centrale Marseille: production and recycling of digital equipment
- Wind energy availability predictions using GIS data and land use information
- Life Cycle Analysis of the environmental impact of the IRPHE laboratory
- Ecological footprint of the Epicurious sailboat
- Study of a low-head water wheel
- Carbon footprint of PV solar power plants

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Savoir aborder et décomposer un problème complexe (C2)
- Savoir proposer des solutions innovantes, mais réalistes (C1)
- Savoir répartir les tâches à effectuer selon les envies ou les compétences de chaque membre du groupe (C3)
- Savoir structurer son travail dans le temps (C3)
- Savoir rendre compte de ses travaux (C3)
- Savoir trouver une organisation au sein d'un groupe et en interface avec des collaborateurs extérieurs (C4)

Modalité de contrôle des connaissances

- Rapport final: 0,34

- Soutenance: 0,33

- Travail effectué: 0,33 (avis du ou des encadrants)

Bibliographie

- Cours du S8 qui correspondent au sujet et tout autre document disponible au centre de doc ou en ligne (Techniques de l'Ingénieur, notamment)
- Cours des autres semestres sur le management et la gestion de projet (si nécessaire, pour se remémorer les points importants)

Equipe pédagogique

- Enseignants de l'ECM
- Encadrants extérieurs (industriels ou autres)

Objectif de Développement Durable

Lutte contre le changement climatique

Consommation et production responsables

Recours aux énergies renouvelables

Villes et communautés durables

Total des heures 38h

Nouvelles heures d'enseignement Projets 38h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Anselmet

■ fabien.anselmet@centrale-marseille.fr

Energie durable (ENE)

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Introduction aux enjeux énergétiques et aspects transverses et sociétaux	Module	34h			3
Energie solaire	Module	28h	8h		3
Energies marine éolienne et hydraulique	Module	50h			4
Energie nucléaire	Module	30h	10h	20h	4
D'autres énergies pour demain ? Les exemples de la biomasse et de l'hydrogène	Module	18h	12h		2
Notions énergétiques transverses : transport, conversion, stockage et énergie électrique	Module	20h			2
Projets	Module				3

Introduction aux enjeux énergétiques et aspects transverses et sociétaux

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- Prendre conscience de l'importance de l'enjeu énergétique durable pour la société.
- Développer une culture générale autour de la thématique de l'énergie.
- Connaître les mécanismes économiques liés au milieu de l'énergie ..
- Découvrir, par le biais de visite industrielle, la réalité des installations énergétiques.

Description du programme

- Introduction sur la notion d'énergie.
- Classement des énergies.
- Gisements et ressources énergétiques.

- Importance géopolitique des différentes ressources énergétiques..
- Mécanismes et modèle économiques spécifiques au milieu de l'énergie.
- Visites industrielles : CEA Cadarache, usine hydro-électrique.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 : L'ingénieur centralien crée de la valeur par l'innovation scientifique et technique.
- C2: L'ingénieur centralien maîtrise la complexité des systèmes et des problématiques qu'il rencontre.
- C3: L'ingénieur centralien conduit des programmes.
- C4: L'ingénieur centralien manage de façon éthique et responsable.
- C5 : L'ingénieur centralien s'inscrit dans une vision stratégique et sait la mettre en œuvre.

Modalité de contrôle des connaissances

CC et DS

Bibliographie

A.V. da Rosa, Fundamentals of Renewable Energy Processes, Academic Press, 2012

Equipe pédagogique

- * Thierry Gaidon
- * Pascal Denis
- Nicolas Clootens

Total des heures 34h

Nouvelles heures d'enseignement Cours Magistral 34h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Gaidon

thierry.gaidon@centrale-marseille.fr

Energie solaire

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Notions de base en :

- * photométrie
- électricité
- équations différentiels

Objectifs d'apprentissage

A la fin du cours, l'étudiant sera capable de :

- * calculer le rayonnement solaire sur un point de référence terrestre.
- * argumenter et choisir une technologie photovoltaïque en fonction du contexte
- * définir un pré-dimensionnement d'une installation photovoltaïque (centrale solaire ou installation individuelle)
- * Calculer le rendement d'un capteur plan thermique en fonction de l'application.
- * définir les besoins en énergie thermique d'un bâtiment et pré-dimensionner une solution de chauffage.

Description du programme

Parmi les énergies durables disponibles, l'énergie issue du rayonnement solaire est très abondante et renouvelable. Cette ressource peut être utilisée directement sous forme de chaleur (solaire thermique) ou transformée en électricité (centrales thermiques ou transformation directe en électricité par effet photovoltaïque). En raison de son abondance, l'énergie solaire prend une part de plus en plus importante dans les ressources mondiales.

Dans ce cours, nous étudierons les caractéristiques de cette ressource et les technologies qui lui sont associées afin de disposer de tous les outils nécessaires pour concevoir des installations électriques et thermiques. Les connaissances apportées tout au long du cours visent également à comprendre les enjeux socio-économiques et scientifiques actuels.

Cette UE se situe au carrefour de plusieurs disciplines : électronique, optique, optronique, physique, thermique.

1. Introduction générale :

Enjeux sociétaux

Problèmes économiques et techniques, défis

2. Gisement solaire:

Aspects physiques

Principe du rayonnement solaire, absorption atmosphérique et dépendance locale, temporelle et spectrale de l'irradiance, photométrie.

Optimisation de l'irradiance : concentrateurs solaires. Efficacité énergétique (énergie solaire reçue, rayonnement thermique, effet de serre).

3. Capteurs photovoltaïques

** Principe de fonctionnement :

Calcul d'une installation photovoltaïque, semi-conducteurs, diodes et effet photovoltaïques ; cellules ; matrices de cellules, adaptation d'impédance, défis à relever (coût, rendement, stockage)

- ** Filières technologiques :
- Silicium Cristallin : mono et polycristallin (Mono-Si, Poly-Si) cellules en couches minces minérales : a-Si :H, CdTe, CIS, SIGS, a-Si :H, μ-Si, HIT, GaAs.
- Cellules organiques et hybrides: principes des cellules organiques, particularité des cellules à pérovskites
- ** Concepts avancés :

Structure de surface, cristaux photoniques, plasmonique, structures quantiques, concentration, ...

Conclusions et perspectives sur le photovoltaïque : quels espoirs, quels usages futurs ?

4. Thermique

- ** Capteurs solaires thermiques
- Le capteur plan : structure, performances, norme d'essai
- Les capteurs sous vide : fonctionnement, durée de vie, applications
- Autres capteurs : sans vitrage, applications courantes
- Capteurs à concentration : calcul du facteur de concentration, suivi du soleil, température chaudière, rendement, les différents types de centrales thermiques à concentration dans le monde actuel et leur capacité de production d'électricité
- ** Dimensionnement des installations thermiques, application de l'énergie solaire pour l'habitat:
- Positionnement (besoin/apport)
- Composants principaux (capteurs, stockage, émetteurs, régulation)
- Calcul du taux de couverture (Cas de l'ECS et du chauffage)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Analyser le gisement solaire d'un site: calculer ses modifications saisonnières et identifier les sources d'ombrages
- * En TD, sur un exemple d'application l'étudiant sera capable de pré-dimensionner une installation photovoltaïque. En particulier il proposera un lieu d'implantation d'une centrale et la durée de son utilisation. Il saura adapter la production d'énergie aux besoins.
- * Acquérir les connaissances sur les technologies photovoltaïques les plus utilisées actuellement. Etre sensible au développement de nouvelles technologies. Savoir comparer ces technologies entre elles.
- * connaître les temps de retour énergétique (cycle énergétique) et les faire corréler avec la technologie et le site d'exploitation
- * anticiper les températures nécessaires pour l'optimisation de rendement d'un capteur thermique plan
- * estimer un taux de couverture solaire
- * reconnaitre les avantages et inconvénients de différents sites géographiques pour les centrales solaires thermiques ou photovoltaïques

Modalité de contrôle des connaissances

Contrôle continu : 2 points de bonus (moyenne de petites évaluations de 5 min ou d'analyse de documents)

Devoir surveillé: 50% (gisement, photovoltaïque), 50% (thermique)

Bibliographie

- 1. Jannot, Y. & Moyne, C. (2016). Transferts thermiques: Cours et 55 exercices corrigés. Édilivre.
- 2. A., L. (s. d.). Energie solaire photovoltaïque (French Edition). dunod.
- 3. Reddy, J. P. (2019). Solar Power Generation: Technology, New Concepts & Policy (1re éd.). CRC Press.
- 4. Solanki, C. S. (2015). Solar Photovoltaics Fundamentals, Technologies and Applications (English) 3rd Edition (3e éd.). Prentice Hall.

Equipe pédagogique

- * Lætitia ABEL-TIBERINI
- * Daniel ROUX
- * David DUCHE
- * Judikael LE ROUZO

Objectif de Développement Durable

Recours aux énergies renouvelables

Consommation et production responsables

Bâtir une infrastructure résiliente

Lutte contre le changement climatique

Villes et communautés durables

Total des heurescours magistralCours Magistral28hTDTravaux Dirigés8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laetitia Abel-Tiberini

■ laetitia.abel-tiberini@centrale-marseille.fr

Energies marine éolienne et hydraulique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Bien identifier, comprendre et maîtriser les enjeux et les critères de dimensionnement et d'optimisation des technologies et dispositifs impliquant les énergies marines, éoliennes et hydrauliques.

Description du programme

De façon générale, le cours est partagé en trois parties : celle sur l'énergie des océans (vagues, hydroliennes...), celle sur l'énergie hydraulique/hydroélectricité, et celle sur les éoliennes. Pour chacune de ces trois parties, les séances associent des cours

magistraux (qui fixent le cadre théorique et les lois physiques qui sous-tendent le fonctionnement des différents dispositifs) et des exercices/travaux dirigés (qui permettent de concevoir et dimensionner des installations). Parmi les concepts à considérer, des critères spécifiques liés au couplage entre les dispositifs mécaniques et les dispositifs électriques sont à prendre en compte dans le dimensionnement. Également, la gamme de puissance visée ou requise (qui peut aller de quelques Watts à plusieurs Giga Watts) impacte le choix de la technologique optimale.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 : L'ingénieur centralien crée de la valeur par l'innovation scientifique et technique.
- C2 : L'ingénieur centralien maîtrise la complexité des systèmes et des problématiques qu'il rencontre.
- C3: L'ingénieur centralien conduit des programmes.
- C4: L'ingénieur centralien manage de façon éthique et responsable.

Modalité de contrôle des connaissances

Devoir surveillé.

Bibliographie

Les petites centrales hydroélectriques : Conception et calcul, par D. Le Gouriérès, publié par les Éditions du Moulin Cadiou en 2009. Disponible au centre de documentation de l'école

Equipe pédagogique

- Fabien Anselmet
- Julien Touboul
- Mohamed Boussak

Total des heures 50h

Nouvelles heures d'enseignement Cours Magistral 50h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Anselmet

■ fabien.anselmet@centrale-marseille.fr

Energie nucléaire

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Donner les éléments pour une compréhension complète de la filière nucléaire, de son rôle dans le paysage énergétique actuel et futur, des ses atouts et ses points faibles. Prise en compte des différents aspects associés, scientifiques, technologiques, environnementaux et sociétaux.

Description du programme

- Introduction : la physique nucléaire, réactions de fission, réactions de fusion.

Module Fission:

- Architecture et fonctionnement des réacteurs nucléaires REP et RNR (JC. Klein)
- Principes de base des systèmes nucléaires (JC. Klein)
- Le combustible des réacteurs nucléaires (Y. Pontillon)
- Retour sur les 3 grands accidents nucléaires : TMI, Tchernobyl et Fukushima enseignements pour la sûreté nucléaire (Y. Pontillon)

- Sûreté Nucléaire (J.C. Klein)

Module fusion:

- Introduction de la fusion contrôlée (F. Schwander)
- Physique de la fusion nucléaire et quantification du rendement dans un réacteur (F. Schwander)
- Physique du plasma et confinement magnétique (F. Schwander)
- Lois d'échelles pour la conception d'un réacteur à fusion (F. Schwander)
- Physique de l'interaction plasma/paroi (G. Ciraolo)
- Situation actuelle de la recherche sur la fusion les objectifs et défis d'ITER (G. Ciraolo)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 L'ingénieur centralien crée de la valeur par l'innovation scientifique et technique
- C2 L'ingénieur centralien maitrise la complexité des systèmes et des problématiques qu'il rencontre
- C3 L'ingénieur centralien conduit des programmes
- C4 L'ingénieur centralien manage de façon éthique et responsable

Modalité de contrôle des connaissances

1 Devoir Surveillé sur la partie Fission et 1 Devoir Surveillé sur la partie Fusion.

Equipe pédagogique

G. Ciraolo (CEA), J.C. Klein (INSTN), Y. Pontillon (CEA), F. Schwander

Total des heures 60h

Nouvelles heures d'enseignement	Cours Magistral	30h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Travaux Pratiques	20h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Frédéric Schwander

■ frederic.schwander@centrale-marseille.fr

D'autres énergies pour demain ? Les exemples de la biomasse et de l'hydrogène

En bref

> Langue de cours: Français

Présentation

Prérequis

Pas de prérequis particuliers : les cours de tronc commun de 1ère année et 2ème année sont suffisants.

Objectifs d'apprentissage

Bien identifier, comprendre et maîtriser les enjeux et les défis à relever en vue d'une utilisation grand public des technologies impliquant la biomasse et les bioénergies, ainsi que l'hydrogène et les piles en combustible. Dans les 2 cas, il s'agit de sources d'énergie potentiellement très intéressantes pour le futur, mais dont le développement et l'impact réels sont encore assez incertains, tant au niveau de l'ampleur qu'au niveau de la mise en œuvre dans le temps.

Description du programme

Le cours comprend à parts égales des éléments sur les bioénergies et sur l'hydrogène et les piles à combustible. Pour ce qui concerne les bioénergies, une séance introductive de cours permet de positionner le problème et les enjeux. Les autres séances sont centrées sur des études de cas et du travail personnel encadré autour de points bien précis liés, notamment les biocarburants (analyse globale du procédé, prétraitements, procédés de distillation, bilans énergétiques associés...). Pour la partie sur l'hydrogène et les piles à combustibles, les séances de cours associent du cours magistral et des séances d'exercices/travaux dirigés. On présentera, en particulier, les aspects thermodynamiques sous-jacents liés aux réactions d'oxydoréduction qui permettent de bien comprendre le fonctionnement des piles et les enjeux technologiques qui sont impliqués dans leur optimisation. Les aspects liés

à la sécurité et aux normalisations en cours de développement pour ces systèmes seront aussi exposés, ainsi que des exemples d'installations et de dispositifs existants tant dans le domaine des transports que pour des applications stationnaires.

Compétences et connaissances scientifiques et techniques visées dans la discipline

C1 : L'ingénieur centralien crée de la valeur par l'innovation scientifique et technique.

C2: L'ingénieur centralien maîtrise la complexité des systèmes et des problématiques qu'il rencontre.

C3: L'ingénieur centralien conduit des programmes.

C4: L'ingénieur centralien manage de façon éthique et responsable.

Modalité de contrôle des connaissances

DS (50 %)

CC (50 %)

Bibliographie

A.V. da Rosa, Fundamentals of Renewable Energy Processes, Academic Press, 2012

M. Boudellal, La pile à combustible, L'hydrogène et ses applications, Dunod, 2012

Equipe pédagogique

- * F.Anselmet
- * P. Denis

Objectif de Développement Durable

Recours aux énergies renouvelables

Bâtir une infrastructure résiliente

Villes et communautés durables

Consommation et production responsables

Lutte contre le changement climatique

Total des heuresNouvelles heures d'enseignementCours Magistral18hNouvelles heures d'enseignementTravaux Dirigés12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Anselmet

■ fabien.anselmet@centrale-marseille.fr

Notions énergétiques transverses : transport, conversion, stockage et énergie électrique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- Présenter les différents aspects transverses tels que les différentes formes de conversion d'énergie, le transport d'énergie, les consommations et les réseaux intelligents Smart grids
- Maîtriser les éléments de base de la conversion d'énergie primaire en énergie électrique en passant par le transport, le stockage, les consommations et les Smart grids
- Comprendre le principe de fonctionnement des machines électriques en fonctionnement moteur et générateur. Présenter les principales topologies des convertisseurs d'électronique de puissance permettant d'alimenter un équipement électrique (moteur, alternateur, carte électronique...) à partir d'une source d'énergie donnée (réseau alternatif, batterie...)
- Présenter les différents moyens de stockage de l'énergie électrique et les enjeux techniques et économiques pour le futur

Description du programme

– Conversion de l'énergie électrique en énergie mécanique (moteurs électriques) : moteur synchrone, moteur asynchrone, principe de fonctionnement, modélisation, schéma équivalent, calcul du couple

- Conversion de l'énergie mécanique en énergie électrique (générateurs électriques, éoliennes) : génératrice asynchrone et synchrone (alternateur)
- Conversion de l'énergie électrique en énergie électrique : sources, interrupteurs, règles de connexion, cellule de commutation, famille de convertisseurs statiques (convertisseur alternatif- continu [AC/DC], continu-continu [DC/DC], continu-alternatif [DC/AC], principes, avantages et inconvénient des structures, transformateur triphasé)
- Transport de l'énergie électrique
- Utilisation de l'énergie électrique (traction ferroviaire, transports [terrestre, aéronautique, maritime], processus industriels, pompage, électro-ménager, éclairage, bâtiments...)
- Stockage de l'énergie électrique (accumulateurs chimiques, pile à combustible, super condensateur, volant d'inertie...)
- Présentation des réseaux de distribution intelligents Smart grids, qui permettent de coupler les différentes formes d'énergies localisées (centrale électrique) ou distribuées (panneaux photovoltaïques ou autres) sur un réseau de distribution ; et d'alimenter une typologie complexe de modes de consommation (habitation, industriel, tertiaire...)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 : L'ingénieur centralien crée de la valeur par l'innovation scientifique et technique.
- C2 : L'ingénieur centralien maîtrise la complexité des systèmes et des problématiques qu'il rencontre.
- C3: L'ingénieur centralien conduit des programmes.
- C4: L'ingénieur centralien manage de façon éthique et responsable.

Modalité de contrôle des connaissances

Devoir surveillé

Bibliographie

Polycopié de cours

Equipe pédagogique

- Mohamed Boussak

- Thierry Gaidon

Total des heures 20h

Nouvelles heures d'enseignement

Cours Magistral

20h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Mohamed Boussak

mohamed.boussak@centrale-marseille.fr

Projets

Présentation

Total des heures 30h

Projets

30h

Nouvelles heures d'enseignement

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Gaidon

thierry.gaidon@centrale-marseille.fr

Sciences de l'information et société numérique (SIS)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Société numérique : Enjeux et Régulation	Module	10h	9h	23h	3
Enjeux Stratégiques du Numérique	Module	40h	2h		4
Télécommunications, Apprentissage et Technologie de l'Information	Module	40h	4h	6h	4
Analyse Statistique de l'Information	Module	36h	8h	16h	4
Codage et Recherche de l'Information	Module	24h		16h	4
Projet	Module				2

Société numérique : Enjeux et Régulation

Fn bref

> Langue de cours: Français

Présentation

Prérequis

UE SHS du tronc commun ingénieur

Objectifs d'apprentissage

- * Comprendre la genèse socio-historique de l'internet et du web.
- * Comprendre la complexité des enjeux posés par les technologies numériques dans leurs dimensions éthiques, sociales, politiques et juridiques, au niveau national et international.
- * Identifier les acteurs et les conflits de valeurs associés aux technologies numériques.
- * Savoir collecter et analyser l'information avec logique et méthode
- Appréhender les enjeux environnementaux associés au numérique

Description du programme

Cette UE est déployée au travers d'un projet d'étude mené en équipe et choisi en concertation avec l'équipe enseignante.

ETHIQUE:

- * Recherche et analyse des problématiques et enjeux soulevés par le thème
- * Identification des acteurs (entreprises, institutions, associations, collectifs...)
- * Immersion dans le travail des acteurs identifiés pour comprendre leurs points de vue, leurs actions et leurs effets
- $\star~$ Réflexion, mise en perspective/conclusion sur les enjeux éthiques mis en évidence

SOCIOLOGIE:

Cadrage général sur la société numérique, sa genèse et ses dynamiques contemporaines.

- * Genèse de l'Internet et du web : cartographie des acteurs, de leurs valeurs, et de leurs idéaux
- * Etude des enjeux contemporains de l'Internet et du web pour la démocratie
- * Illectronisme et inégalités numériques

DROIT:

- * Encadrement des acteurs du numérique : propriété intellectuelle, protection de la vie privée, régulation des contrats
- * Règlement juridique des questions liées aux contenus et aux flux numériques

En complément, l'équipe enseignante fournit des clés de compréhension spécifiques aux sujets traités par les équipes d'étudiants.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Formuler une problématique éthique associée aux technologies numériques.
- * Identifier les acteurs, leurs intérêts, leurs positions.
- * Evaluer les impacts sociétaux, économiques, juridiques des technologies numériques.
- * Proposer des scénarios de régulation et de conciliation d'intérêts
- Se positionne en tant qu'acteur (concepteur, usager, citoyen) par rapport aux potentialités techniques et aux impacts sociétaux des technologies numériques.
- * Comprendre les grands principes de la propriété intellectuelle
- Connaître les grands principes de protection de la vie privée et les libertés fondamentales

Modalité de contrôle des connaissances

Contrôle continu 100%: travail en groupe sur une thématique choisie dans le cadre du module d'éthique

- remise de travaux intermédiaires écrits (notes de lecture, synthèse)
- soutenance orale

Bibliographie

Dominique Boullier, Sociologie du numérique, Armand Colin / collection U, 2016.

Equipe pédagogique

- * Edlira Nano
- * Laetitia Piet
- * Denis Roynard

Objectif de Développement Durable

Réduction des inégalités

Villes et communautés durables

Consommation et production responsables

Total des heures		42h
Nouvelles heures d'enseignement	Cours Magistral	10h
Nouvelles heures d'enseignement	Travaux Dirigés	9h
Nouvelles heures d'enseignement	Travaux Pratiques	23h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laetitia Piet

■ laetitia.piet@centrale-marseille.fr

Enjeux Stratégiques du Numérique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours de tronc commun

Objectifs d'apprentissage

Ce module s'appuie sur différentes disciplines pour présenter les enjeux stratégiques du numérique.

Le but de cet enseignement est de donner aux élèves une bonne connaissance des enjeux, des ordres de grandeur, de l'évolution et des performances dans le numérique et l'informatique industrielle. La représentation et la modélisation des connaissances et du raisonnement sont aussi étudiées car elles sont très utilisées notamment en IA.

Description du programme

Aléatoire et déterminisme en science et technologie

Rappels sur l'introduction de l'aléatoire dans la physique du XXème siècle, ses conséquences et discussion sur son rôle dans les technologies de traitement de l'information.

Apprentissage et Deep Learning

Les enjeux stratégiques du deep-learning et de l'apprentissage sont présentés.

Neurosciences computationnelles

Cours d'ouverture présentant les principales problématiques liées à la modélisation du traitement de l'information dans le cerveau.

Perception visuelle humaine

Quels sont les facteurs qui peuvent expliquer notre perception du monde qui nous entoure ? Différents aspects seront étudiés : anatomique, psychologique, cognitif.

Cryptographie

Panorama technique & historique.

Problématique de la représentation des connaissances

Travaillant sur des représentations symboliques des connaissances et utilisant la notion d'heuristique, les systèmes d'intelligence artificielle (IA) permettent une correspondance avec le monde réel.

Traitement matériel de l'information

Face à l'évolution extrêmement rapide des composants électroniques et de leur technologie, tout ingénieur doit avoir une culture générale dans ce domaine qui lui permette d'être à même d'anticiper les mutations technologiques et de s'y adapter.

Séminaires: Extérieurs

Compétences et connaissances scientifiques et techniques visées dans la discipline

Ce module vise à donner une vision large des enjeux économiques, scientifiques et technologiques dans le domaine du numérique.

Il vise ainsi à développer la capacité à définir une stratégie à long terme et à identifier les interactions entre éléments.

Modalité de contrôle des connaissances

Contrôle Continu:

CC1 Aléatoire et déterminisme en science et technologie et Perception visuelle humaine: 1 épreuve écrite - 26%

CC2 Neurosciences computationnelles: 1 compte rendu - 18%

CC3 Cryptographie: 1 compte rendu - 12%

CC4 Problématique de la représentation des connaissances : 1 moyenne de 3 écrits - 26%

CC5 Traitement matériel de l'information : 1 compte rendu - 18%

Equipe pédagogique

- * T. Artières
- * G. Bérardi
- * E. Daucé
- * C. Fossati
- * C. Jazzar
- * P. Préa
- * Ph. Réfrégier
- * M. Roche

Total des heuresCMCours Magistral40hTDTravaux Dirigés2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Muriel Roche

■ muriel.roche@centrale-marseille.fr

Télécommunications, Apprentissage et Technologie de l'Information

En bref

> Langue de cours: Français

Présentation

Prérequis

Informatique élémentaire, notions de base du traitement du signal et de la photonique

Objectifs d'apprentissage

L'objectif de ce module est de présenter des applications, des technologies avancées du traitement, d'analyse, de transmission et d'affichage des données numériques au sens large et les principes généraux sur l'apprentissage statistique et les réseaux de neurones. Il s'agit donc de présenter dans une vision transverse des principales technologies des composants et systèmes, des techniques d'apprentissage statistique et des applications concrètes de la théorie de l'information dans le domaine du numérique et des télécommunications. Les conséquences pratiques et conceptuelles dans les autres domaines des sciences et en particulier dans ceux de la physique seront également abordés (propagation, transmission,..).

Description du programme

Microélectronique Numérique (6H CM, 4H TD : C. Fossati)

Dans un contexte d'évolution continuelle des technologies microélectroniques, l'étude des architectures de traitement de l'information, quelle que soit l'origine de celle-ci, est un aspect important de la formation d'ingénieur.

Théorie de l'Information - Applications (14H CM : S. Bourennane)

Le but de ce cours est la mise en œuvre des principaux concepts de la théorie de l'information en considérant quelques applications telles que la compression de données, la transmission de données, le stockage et le traitement des données. Une revue des différentes applications avancées de la théorie de l'information dans les télécoms sera également présentée.

Télécommunications

- Télécommunications par fibre optique (4H CM J.C. Antonna). Capacité des réseaux et effets physiques lors de la propagation (distorsion, bruit).
- Réseaux de Télécommunications (8H CM : A. Khalighi). Réseaux sans-fil (téléphonie mobile ; réseaux locaux, personnels et étendus ; optique sans-fil) et filaires (ADSL, PLC) ; smart grids ; Internet des objets pour smart-city et smart-home.

Système d'affichage (6H CM : L. Gallais)

Présentation des notions essentielles sur les sciences et technologies relatives aux écrans.

Apprentissage et réseaux de neurones (2H CM, 6H TP: Th. Artières).

Ce module introduit les principes généraux de l'apprentissage statistique et les réseaux de neurones (Perceptron multi couches et modèles convolutionnels) pour la classification supervisée et pour la génération de données.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Développer des innovations techniques et scientifiques (Capacité à stimuler son imagination, Capacité à analyser le contexte, Capacité à mobiliser une culture scientifique/technique, Capacité à inventer des solutions créatives, ingénieuses, originales) Résoudre des problèmes complexes et transdisciplinaires (capacité à reconnaître les éléments spécifiques d'un problème, Capacité à proposer un ou plusieurs scénarios de résolution, Capacité à identifier les interactions entre éléments, Capacité à prendre en compte l'incertitude générée par la complexité)

Modalité de contrôle des connaissances

Contrôle Continu (CC):

CC1 (partie « Microélectronique Numérique ») : une moyenne de deux écrits sur table en cours - Coefficient = 25% de la note finale

CC2 (partie « Théorie de l'Information - Applications ») : une moyenne de comptes rendus et d'écrit sur table en cours - Coefficient = 25% de la note finale

CC3 (parties « Télécommunications » et « Système d'affichage ») : une moyenne de comptes-rendus et d'écrits sur table en cours - Coefficient = 25% de la note finale

CC4 (partie « Apprentissage et réseaux de neurones ») : 1 rendu de projet - Coefficient = 25% de la note finale

Equipe pédagogique

J.C. Antonna

Th. Artières

S. Bourennane

C. Fossati

L. Gallais

A. Khalighi

Objectif de Développement Durable

Réduction des inégalités

Villes et communautés durables

Accès à une éducation de qualité

Consommation et production responsables

Total des heures		50h
Nouvelles heures d'enseignement	Cours Magistral	40h
Nouvelles heures d'enseignement	Travaux Dirigés	4h
Nouvelles heures d'enseignement	Travaux Pratiques	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Salah Bourennane

■ salah.bourennane@centrale-marseille.fr

Analyse Statistique de l'Information

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours de tronc commun

Objectifs d'apprentissage

L'objectif est de permettre aux élèves d'acquérir les fondements de la théorie de l'information, des méthodes d'analyse d'informations physiques et statistiques et des techniques de classification (supervisées et non supervisées). Les domaines d'applications sont ceux du numérique, de la physique et de la reconnaissance des formes.

Description du programme

Extraction d'informations physiques et statistiques.

Les techniques statistiques sont des méthodes particulièrement bien adaptées pour l'extraction d'information. Une attention particulière est apportée aux données numériques et aux grandeurs physiques. Les sujets abordés reposent sur des approfondissements de probabilité appliquée, de statistique et des méthodes d'optimisation adaptées. Les techniques de caractérisation des fluctuations, d'estimation et d'analyse des données sont ainsi abordées à la fois sur leurs fondements et leurs applications.

Fondements de la théorie de l'Information et de la classification.

La théorie de l'information fournit une mesure quantitative de la notion d'information apportée par un message ou une observation. Les éléments fondamentaux de la théorie de l'information seront présentés non seulement pour ses applications dans le domaine du traitement de l'information mais également en montrant les liens avec d'autres domaines scientifiques et en particulier avec ceux de la classification des données, de la physique et, plus généralement, des statistiques. Les notions relatives à l'entropie, l'information, la complexité seront ainsi abordées dans une perspective large.

Reconnaissance des formes statistique.

L'objectif de ce module est de présenter la problématique de la décision statistique autour des objectifs de la détection, de la classification avec ou sans modèle probabiliste a priori. Cet enseignement est structuré autour de travaux pratiques afin d'illustrer à partir d'exemples comment l'analyse des performances permet de choisir parmi différentes techniques.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- -Développer des innovations techniques et scientifiques (capacité à stimuler son imagination, capacité à analyser le contexte, capacité à élargir à d'autres usages un outil ou un concept, capacité à collecter et analyser de l'information avec logique et méthode, capacité à mobiliser une culture scientifique/technique).
- -Résoudre des problèmes complexes et transdisciplinaires (capacité à comprendre et formuler le problème, capacité à reconnaître les éléments spécifiques d'un problème, capacité à identifier les interactions entre éléments, capacité à prendre en compte l'incertitude générée par la complexité).
- -Élaborer et conduire des projets scientifiques et techniques internationaux (capacité à approfondir rapidement un domaine).

Modalité de contrôle des connaissances

CC1 (partie « Extraction d'informations physiques et statistiques ») : 1 écrit qui contribue pour 37 % de la note finale

CC2 (partie « Fondements de la théorie de l'Information et de la classification ») : 1 écrit qui contribue pour 26 % de la note finale

CC3 (partie « Reconnaissance des formes statistique ») : une moyenne robuste de comptes rendus qui contribue pour 37 % de la note finale

Bibliographie

Ph. Réfrégier « Noise theory and application to physics » - Springer 2003.

T.M. Cover and J.A. Thomas « Elements of information theory» - Wiley 2006.

R.O. Duda, P.E. Hart and D.G. Stork « Pattern Classification » - Wiley 2001.

Equipe pédagogique

- * G.Bérardi
- * Frédéric Galland
- * Timothée Justel
- * Ph. Réfrégier
- * M. Roche

Total des heures		60h
CM	Cours Magistral	36h
TD	Travaux Dirigés	8h
TP	Travaux Pratiques	16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Muriel Roche

■ muriel.roche@centrale-marseille.fr

Codage et Recherche de l'Information

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours de Tronc Commun

Objectifs d'apprentissage

Le codage et la recherche de l'information consiste à mettre en place un système capable de retrouver une information (structurée, textuelle, visuelle, sonore.) de manière à répondre à un besoin exprimé de l'utilisateur. Cette UE a pour but de présenter aux élèves les principales méthodes de recherche, reconnaissance, extraction, mise en forme, acheminement de l'information, en étant à la fois capable de modéliser, choisir et mettre en œuvre l'ensemble du système permettant d'obtenir une information pertinente.

Description du programme

Images (4H CM + 8H TP : M. Roche). Perception visuelle humaine et TP en tatouage d'image et en qualité de l'image en utilisant les aspects

vision humaine.

Information Quantique (14H CM: T. Durt)

La théorie de l'Information Quantique résulte du métissage de deux théories majeures du XXème siècle, à savoir la théorie quantique et la théorie de l'information. Le but du cours est de donner un bref aperçu de cette nouvelle discipline et de faire la part des choses entre utopies théoriques et réalisations pratiques & ainsi d'appréhender de nouveaux concepts & une vision non-classique

de l'information, avec un focus sur l'ordinateur quantique et la cryptographie quantique. Au moins une intervention extérieure est prévue.

Langage C (6H CM, 8H TP: N. Bertaux)

Ce module a pour objectif de donner aux étudiants une méthodologie expérimentale en sciences numériques :

- Qualité, validité et efficacité en programmation (application en C),
- Introduction et sensibilisation aux problèmes de calculs numériques

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Développer des innovations techniques et scientifiques (Capacité à stimuler son imagination, capacité à analyser le contexte, capacité à mobiliser une culture scientifique/technique, capacité à inventer des solutions créatives, ingénieuses, originales)
- Résoudre des problèmes complexes et transdisciplinaires (Capacité à comprendre et formuler le problème, capacité à prendre en compte l'incertitude générée par la complexité, capacité à converger vers une solution acceptable)
- Élaborer et conduire des projets scientifiques et techniques internationaux (capacité à approfondir rapidement un domaine).
- Effectuer un travail d'analyse personnalisée en rapport avec le contenu du cours, qui vise à développer son esprit critique et sa vision stratégique.

Modalité de contrôle des connaissances

Contrôle Continu (CC):

1 CC (écrit + compte rendu) 100% de la note finale

Equipe pédagogique

- * N.Bertaux
- * T. Durt
- * M. Roche

Objectif de Développement Durable

Accès à une éducation de qualité

Accès à des emplois décents

Total des heures 40h

Nouvelles heures d'enseignement Cours Magistral 24h

Nouvelles heures d'enseignement Travaux Pratiques 16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thomas Durt

■ thomas.durt@centrale-marseille.fr

Projet

Présentation

Objectifs d'apprentissage

L'objectif de cette UE est d'offrir la possibilité aux élèves du S8-SISN de réaliser une étude technique ou d'effectuer une analyse sur les enjeux sur une problématique donnée. Cet enseignement favorise le travail en équipe car les élèves se mettent en groupes, mais éventuellement se mélangent avec des élèves de l'IEP d'Aix-en-Provence.

Les élèves apprennent ainsi à mobiliser leur connaissance pour résoudre techniquement un problème ou pour réfléchir au enjeux lié à une problématique pouvant être sociétale, ou lié au droit des données.

Description du programme

Les sujets peuvent sont proposés aux élèves lors d'une séance de présentation. Ces sujets peuvent être proposés par un enseignant de Centrale, par un extérieur (association, entreprise, labo...) ou par les élèves eux-mêmes. Chaque projet est réalisé en équipe, soit au minimum 2 élèves et au

maximum 4 élèves. Pour chaque projet, un tuteur est désigné parmi l'équipe enseignante pour permettre d'orienter les élèves dans leurs choix. Les élèves sont évalués lors d'une soutenance finale. Avant cette soutenance finale, les élèves ont l'occasion de tester leur capacité à restituer leur travail avec une soutenance intermédiaire.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Capacité à analyser un contexte et à présenter des résultats.

Capacité à mobiliser une culture scientifique/technique pour situer les enjeux.

Capacité à inventer des solutions créatives, ingénieuses, originales.

Capacité à proposer un ou plusieurs scénarios de résolution.

Capacité à identifier les interactions entre éléments.

Modalité de contrôle des connaissances

Contrôle Continu (CC):

CC1 = 1 oral - Coefficient = 50% de la note finale

CC2 = 1 compte-rendu - Coefficient = 50% de la note finale

Equipe pédagogique

L'ensemble des enseignants de SISN

Total des heures 26h

Projet Projets 26h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Mohammad Ali Khalighi

■ ali.khalighi@centrale-marseille.fr

Alternant - Alternance Entreprise

Liste des enseignements

	Nature	CM	TD	TP	Crédits	
Interculturel, gestion de projet	Module		40h		6	
Compétences en Alternance CEA 4	Module				19	
CEE 2 - Rapport d'alternance 2A	Module				5	

Interculturel, gestion de projet

En bref

> Langue de cours: Français

Présentation

Prérequis

Aucun

Objectifs d'apprentissage

Activité 1 : Gestion de l'Interculturel

Permettre à l'élève d'utiliser ses compétences communicationnelles dans la langue native du pays

ciblé ou en anglais.

Activité 2 : Gestion de projet

Vivre le déroulement réel d'un projet au travers d'un simulateur interactif de conduite de projet.

Activité 3 : Gestion de la Santé et de la Sécurité au travail (SST)

Connaitre les problématiques liées aux risques sur le lieu de travail.

Description du programme

Activité 1 : Gestion de l'Interculturel

* Etudier des problématiques interculturelles en entreprise

- * Élaborer une grille de questions pour mener une interview
- * Rechercher un ou plusieurs correspondants dans une entreprise ou un laboratoire étrangers
- * Établir un calendrier d'échanges avec le(s) correspondant(s), incluant une proposition de

contenu basé sur les particularités culturelles du pays.

- Échanger avec le(s) correspondant(s)
- * Mettre au point une analyse socio-professionnelle comparative de trois pays différents.

Activité 2 : Gestion de projet

Les participants vivent en groupe le déroulement d'un projet réel avec tous ses **risques**, et le pilotent sur les aspects **coûts, qualité** et **délais**. le simulateur met les participants en situation pour les faire agir et réagir, en tenant compte de tous les paramètres du projet. Confrontés à un nombre important de situations nécessitant une **prise de décision** rapide, les membres du groupe apprennent à travailler et à décider ensemble. Les participants réalisent les conséquences de leurs actes dans un système complexe, le projet, où les **facteurs humains** jouent un rôle prépondérant.

Activité 3 : Gestion de la Santé et de la Sécurité au travail (SST)

Conférence en collaboration avec la CARSAT

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Se connaître, se construire (Compétence Management éthique et responsable)
- Développer son réseau (Compétence Vision stratégique)

Modalité de contrôle des connaissances

Contrôle continu

Présentation : présenter les interlocuteurs, le nombre et la durée des échanges, le

questionnaire d'interview, analyse comparative des trois pays entre eux et par rapport à la

France.(15 à 20 min de présentation, 15 min de questions)

Equipe pédagogique

Valérie Hamel

Pierre Bonora

Laetitia Piet

Total des heures 40h Nouvelles heures d'enseignement 40h

Travaux Dirigés

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

□ vincent.merval@centrale-marseille.fr

Compétences en Alternance CEA 4

Présentation

Objectifs d'apprentissage

Le module « compétence en alternance » a pour objectif de former les alternants à une mission spécifique en entreprise.

L'objectif est de se familiariser à un milieu particulier, d'y acquérir les codes, la compréhension du fonctionnement de la structure, de faire émerger des solutions innovantes permettant l'avancée du projet.

Pour le semestre 8, l'objectif est d'intégrer les compétences, les connaissances agrégées pendant les trois premiers semestres. Le semestre 8 peut être l'occasion pour l'apprenti de se confronter à de nouvelles structures, de nouvelles façons de travailler, de nouvelles organisations de travail via la mobilité internationale.

Description du programme

Pendant cette période, l'apprenti doit faire des points réguliers avec l'école, afin de la tenir informé de sa mission et de son évolution.

Les points importants sont :

- La formation (connaissances de base, aptitudes aux acquisitions, sens de l'analyse, sens de la synthèse, créativité et niveau d'innovation)
- Le travail et les résultats (niveau de qualité, quantité, efficacité, atteinte des objectifs, respect des délais, prise en main du sujet, maîtrise du sujet)
- La personnalité (esprit d'initiative, sociabilité, contacts, intérêts, motivation, sens des responsabilités, méthode et organisation, communication, ouverture d'esprit, jugement et réalisme)

Modalité de contrôle des connaissances

Réalisation d'une vidéo

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Guillaume Graton

guillaume.graton@centrale-marseille.fr

CEE 2 - Rapport d'alternance 2A

Présentation

Prérequis

Aucun

Description du programme

La période de présence en entreprise en S8 permet de développer de manière approfondie les missions confiées à l'apprenant.

C'est la période privilégiée pour réaliser la mobilité internationale.

Un rapport de Compétences en Entreprise pour le semestre 8 est individuel. Il porte sur la présentation du travail effectué, en mettant en évidence les enjeux, le contexte, les solutions envisagées, la solution retenue, la mise en œuvre et les résultats.

Une partie spécifique concernant l'acquisition des Compétences de l'ingénieur centralien pourra être demandée

Modalité de contrôle des connaissances

Rapport écrit

Évaluation Entreprise

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Guillaume Graton

guillaume.graton@centrale-marseille.fr

Alternant - Alternance Recherche

Liste des enseignements

	Nature	CM	TD	TP	Crédits	
Interculturel, gestion de projet	Module		40h		6	
Compétences en alternance Recherche CEA4	Module				19	
Stage 2A (en entreprise)	Module				5	

Compétences en alternance Recherche CEA4

Présentation

Objectifs d'apprentissage

Semestre en alternance dans un Laboratoire partenaire avec 9 semaines minimum à l'étranger.

Le module « compétence en alternance » a pour objectif de former les alternants à une mission spécifique en Laboratoire. L'objectif est de se familiariser à un milieu particulier, d'y acquérir les codes, la compréhension du fonctionnement de la structure, de faire émerger des solutions innovantes permettant l'avancée du projet.

Pour le semestre 8, l'objectif est d'intégrer les compétences, les connaissances agrégées pendant les trois premiers semestres. Le semestre 8 peut être l'occasion pour l'alternant de se confronter à de nouvelles structures, de nouvelles façons de travailler, de nouvelles organisations de travail via la mobilité internationale.

Description du programme

Les points importants sont :

- La formation (connaissances de base, aptitudes aux acquisitions, sens de l'analyse, sens de la synthèse, créativité et niveau d'innovation)
- Le travail et les résultats (niveau de qualité, quantité, efficacité, atteinte des objectifs, respect des délais, prise en main du sujet, maîtrise du sujet)
- La personnalité (esprit d'initiative, sociabilité, contacts, intérêts, motivation, sens des responsabilités, méthode et organisation, communication, ouverture d'esprit, jugement et réalisme)

Modalité de contrôle des connaissances

Vidéo

Rapport

Évaluation Laboratoire

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Caroline Fossati

■ caroline.fossati@centrale-marseille.fr

Stage 2A (en entreprise)

Présentation

Objectifs d'apprentissage

Le stage 2A est un stage d'assistant ingénieur permettant la découverte du métier d'ingénieur. Vous devrez réaliser une mission représentative d'un métier d'ingénieur ou de chercheur en prenant une position active au sein d'une équipe. Vous serez amené à être force d'analyse et de proposition.

Description du programme

Le stage de 2A peut se dérouler aussi bien au sein d'une entreprise qu'au sein d'un laboratoire, en France ou à l'étranger. Sa durée est comprise entre 2 et 3 mois (8 semaines minimum) se déroulant sur la période de juin à août.

Modalité de contrôle des connaissances

Rapport

Soutenance

Évaluation entreprise

Total des heures 0h

Alternant - Alternance Entrepreunariat

Liste des enseignements

	Nature	CM	TD	TP	Crédits	
Interculturel, gestion de projet	Module		40h		6	
CEA 4 (rapport + soutenance pour la période mi février - fin mai)	Module				19	
Stage 2A en entreprise (autre que la leur)	Module				5	

CEA 4 (rapport + soutenance pour la période mi février - fin mai)

Présentation

Objectifs d'apprentissage

Semestre en alternance Entrepreneuriat.

Le module « compétence en alternance » a pour objectif de former les alternants à une mission spécifique dans le cadre de leur projet professionnel. L'objectif est de se familiariser à un milieu particulier, d'y acquérir les codes, la compréhension du fonctionnement de la structure, de faire émerger des solutions innovantes permettant l'avancée du projet.

Pour le semestre 8, l'objectif est d'intégrer les compétences, les connaissances agrégées pendant les trois premiers semestres. Le semestre 8 peut être l'occasion pour l'alternant de se confronter à de nouvelles structures, de nouvelles façons de travailler, de nouvelles organisations de travail.

Description du programme

Les points importants sont :

- La formation (connaissances de base, aptitudes aux acquisitions, sens de l'analyse, sens de la synthèse, créativité et niveau d'innovation)
- Le travail et les résultats (niveau de qualité, quantité, efficacité, atteinte des objectifs, respect des délais, prise en main du sujet, maîtrise du sujet)
- La personnalité (esprit d'initiative, sociabilité, contacts, intérêts, motivation, sens des responsabilités, méthode et organisation, communication, ouverture d'esprit, jugement et réalisme)

Modalité de contrôle des connaissances

Rapport

Soutenance pour la période mi février - fin mai

Total des heures 0h

Stage 2A en entreprise (autre que la leur)

Présentation

Objectifs d'apprentissage

Le stage 2A est un stage d'assistant ingénieur permettant la découverte du métier d'ingénieur. Vous devrez réaliser une mission représentative d'un métier d'ingénieur ou de chercheur en prenant une position active au sein d'une équipe. Vous serez amené à être force d'analyse et de proposition.

Dans le cas particulier de l'alternance Entrepreneuriat, ce stage doit être effectué dans une structure différente de celle du projet entrepreneurial.

Description du programme

Le stage de 2A peut se dérouler aussi bien au sein d'une entreprise qu'au sein d'un laboratoire, en France ou à l'étranger. Sa durée est comprise entre 2 et 3 mois (8 semaines minimum) se déroulant sur la période de juin à août.

Modalité de contrôle des connaissances

Rapport

Soutenance

Évaluation entreprise

Total des heures 0h

Tronc Commun

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
L'ingénieur face aux enjeux de stratégie et d'innovation	Module	20h			1
L'ingénieur face aux enjeux éthiques et humains	Module	18h	2h		2
Langues et Cultures Internationales 9	Module				2

L'ingénieur face aux enjeux de stratégie et d'innovation

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Activité 1 : Mai#triser les fondamentaux de l'intrapreneuriat

Activité 2 :

- * se familiariser avec la démarche de stratégie des entreprises
- * maîtriser les premiers éléments du vocabulaire "managérial et gestionnaire"
- maîtriser la boîte à outils, concepts et méthodes essentiels de la stratégie
- développer des capacités de réflexion sur les questions de gestion
- comprendre et résoudre des petits cas de stratégie d'entreprises
- * déployer une culture générale en matière de gestion pour comprendre le monde socio-économique
- * agir en acteur responsable en se sensibilisant à la RSE

Description du programme

Activité 1 : (2 heures par session)

Session 1 – Innover avec l'intrapreneuriat : Description des 4 principaux courants en entrepreneuriat (l'école économique, l'école des traits, l'école du processus, et l'école de l'organisation entrepreneuriale), des différentes formes d'entrepreneuriat, et des définitions de l'Intrapreneuriat / Étude de cas.

Session 2 – Construire un projet intrapreneurial : Développement de l'idée intrapreneuriale, formulation de l'intention intrapreneuriale, élaboration du business plan, et recherche de sponsors / Étude de cas.

Session 3 – Devenir un intrapreneur : Identification des traits intrapreneuriaux des collaborateurs de l'organisation, et distinction de l'intrapreneur par rapport au manager traditionnel et à l'entrepreneur / Etude de cas.

Session 4 – Mener un projet intrapreneurial : Présentation des méthodes de travail propres à l'esprit startup (Agilité, Lean Startup, Scrum, Design Thinking), et leurs outils / Étude de cas.

Session 5 – Intraprendre selon la stratégie d'entreprise : Analyse des outils à disposition de l'organisation pour opérer le renouveau stratégique par le biais de l'intrapreneuriat, et compréhension des équilibres stratégiques / Étude de cas.

Activité 2 : Cours magistraux : 10h

Session 1 : Introduction à la stratégie d'entreprise

Session 2 : la segmentation et les facteurs clés de succès

Session 3: les environnements concurrentiels

Session 4: le business model canva

Session 5 : le portefeuille d'activité

Compétences et connaissances scientifiques et techniques visées dans la discipline

C1 - INNOVATION : L'INGÉNIEUR CENTRALIEN CRÉE DE LA VALEUR PAR L'INNOVATION SCIENTIFIQUE ET TECHNIQUE

C2 – COMPLEXITÉ : L'INGÉNIEUR CENTRALIEN MAITRISE LA COMPLEXITÉ DES SYSTÈMES ET DES PROBLÉMATIQUES QU'IL RENCONTRE

C5 – VISION STRATÉGIQUE : L'INGÉNIEUR CENTRALIEN S'INSCRIT DANS UNE VISION STRATÉGIQUE ET SAIT LA METTRE EN ŒUVRE

Modalité de contrôle des connaissances

Activité 1 :

Étude de cas : 5H - 40%

Épreuve finale individuelle: 1H - 60%

Activité 2 :

Quizz individuel sur la maîtrise des fondamentaux du business: 40%

Etude de cas et présentation sur la compréhension de l'environnement d'une entreprise et dl'analyse critique de situations de nusiness complexes : 60%

Bibliographie

LHEMANN-ORTEGA L., LEROY F., GARETTE B., DUSSAUGE P., et DURAND R., Strategor, Dunod, 2013.

LOILIER T., TELLIER A., Les grands auteurs en Stratégie, Editions EMS Management et société, 2007.

MESSEGHEM K. et TORRES O., Les grands auteurs en Entrepreneuriat et PME, Editions EMS Management et société, 2015.

PINCHOT G., Intrapreneuring, Harper and Row, 1985.

P. Chereau, P-X Meschi, Le Conseil stratégique pour l'entreprise (Pearson, 2014).

David Collis et Cynthia Montgomery, Corporate Strategy - A Resource-Based Approach (McGraw-Hill, 1998).

Pankaj Ghemawat, Strategy and the Business Landscape (Prentice Hall, 2009).

Gerry Johnson, Kevan Scholes, Richard Richard Whittington, Frédéric Fréry, Stratégique (Pearson Education, 2008).

Lehmann-Ortega, Leroy, Garrette, Dussauge, Durand, Strategor, (Dunod, 2013).

M. E. Porter (1982), Choix stratégiques et concurrence : technique d'analyse des secteurs et de la concurrence dans l'industrie, Economica.

M. E. Porter, (1986), L'Avantage concurrentiel : comment devancer ses concurrents et maintenir son avance, InterEditions.

Lecture de périodiques spécialisés : Le Monde (quotidien), Les Échos (quotidien), L'Essentiel du management (mensuel), Capital (mensuel), La revue française de gestion.

Equipe pédagogique

- Mélanie ROUX
- * Annelise MATHIEU

Total des heures 20h

Nouvelles heures d'enseignement Cours Magistral 20h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

✓ vincent.merval@centrale-marseille.fr

L'ingénieur face aux enjeux éthiques et humains

Fn bref

> Langue de cours: Français

Présentation

Objectifs d'apprentissage

- * Comprendre les enjeux, les controverses et les difficultés associées à la théorie et la pratique de la responsabilité des entreprises
- * Savoir analyser de manière critique la responsabilité d'une entreprise
- * Analyser sa capacité d'influence au sein d'une organisation en :
- * Identifiant et mettant en perspective son registre de communication interpersonnelle dominant et son système de valeurs
- * Hiérarchisant ses intérêts de carrière pour mieux positionner ses choix professionnels
- * Identifiant l'impact de son rôle et de ses responsabilités au sein d'une organisation
- * Analyser l'impact du fonctionnement relationnel d'une équipe sur sa performance en :
- * Comprenant les enjeux autour de la qualité des relations et de la construction d'un projet commun sur la cohésion et l'efficacité de l'équipe
- * Connaissant les leviers managériaux et relationnels propres au développement de la qualité des relations ainsi qu'à la construction d'un projet commun
- * Distinguant le leadership managérial et le leadership relationnel
- * Analyser le rôle de l'agilité comportementale dans l'exercice de son leadership en :
- * Appréhendant l'utilisation des 3 positions perceptuelles dans les échanges interpersonnels
- * Distinguant les différents leviers motivationnels pour une personne
- * Comprenant les 4 dimensions du leadership
- * Mettre en œuvre un style de leadership de manière pertinente au regard des enjeux, du contexte et d'une intention en :
- * Analysant les caractéristiques de chacun des 4 styles de leadership
- * Mettant en perspective les forces et les vulnérabilités de chacun des 4 styles de leadership
- * Utilisant les spécificités de chacun des 4 styles de leadership

Description du programme

Activité 1 : La responsabilité des entreprises : 9h CM + 2h TD

Compte tenu de l'influence du fonctionnement des entreprises sur les enjeux sociaux, environnementaux et démocratiques contemporains, il importe de comprendre les enjeux relatifs à la responsabilité des entreprises.

Il s'agira, d'une part, de revenir sur les principales approches théoriques, positives et normatives, développées depuis plus d'un demi-siècle, en insistant notamment sur les interactions complexes entre stratégie, opinion publique et régulation publique.

D'autre part, sur un plan empirique, la manière dont certaines entreprises se saisissent de ces enjeux sera étudiée à partir de situations concrètes.

Activité 2 : Le leadership : la compétence comportementale et relationnelle du manager : 12h

Notre influence au sein d'une organisation :

- * Qu'est-ce qu'un management éthique et responsable?
- * Mon rôle, mon impact : la responsabilité de mon influence

Le relationnel dans le fonctionnement d'une équipe : le point de bascule de la performance

- * Les indispensables de la performance d'une équipe : la cohésion et l'efficacité
- * Les composantes de la cohésion et de l'efficacité d'une équipe : la pyramide de Lencioni
- * L'impact individuel au sein de l'équipe : le leadership relationnel
- L'agilité comportementale et relationnelle : la clé du leadership
- * La mécanique du leadership : pas de leadership sans conscience
- * Les positions perceptuelles : l'accès à la conscience
- * Les leviers motivationnels, la clé de l'adaptation relationnelle
- * Les 4 dimensions du leadership : une intention, un comportement
- * Styles de leadership et stratégies de communication

Activité 3 : CAP 3A

Compétences et connaissances scientifiques et techniques visées dans la discipline

Activité 1 :

C4 - MANAGEMENT DES HOMMES

C5 - VISION STRATEGIQUE

Activité 2 :

C4 L'ingénieur centralien manage de façon éthique et responsable : Composante 1 Se connaître, se construire (niveau compétent) et Composante 2 Générer de la performance individuelle et collective (niveau intermédiaire)

Activité 3 :

C4 - Management éthique et responsable

Modalité de contrôle des connaissances

Activité 1 :

- * Évaluation écrite (5 à 10 pages) : analyse critique de la politique de responsabilité d'une entreprise à partir d'un cas pratique **Activité 2** :
- * En groupe Étude de cas (préparation + prise de parole en public) : dans un contexte de crise et d'incertitude, utiliser un style de leadership imposé afin d'impacter ses interlocuteurs en les rassurant.
- * Activité 3: rendus Moodle + présence

Bibliographie

Activité 2

Robert DILTS, Conscious Leadership & Resilience

Frédéric LALOUX, Reinventing Organisations

Equipe pédagogique

- * Guillaume QUIQUEREZ
- * Adelaïde TINEL
- * Carole ENOCH

Total des heures		20h
Nouvelles heures d'enseignement	Cours Magistral	18h
Nouvelles heures d'enseignement	Travaux Dirigés	2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

✓ vincent.merval@centrale-marseille.fr

Langues et Cultures Internationales 9

Fn bref

Langue de cours: Allemand, Anglais, Chinois, Espagnol, Français, Italien, Japonais

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'enseignement des LCI s'inscrit dans la formation de citoyen ne s et ingénieur e s internationaux ales avertire s et responsables.

- * Mobiliser des savoirs et des savoir-faire linguistiques, conceptuels, culturels, communicationnels.
- * Acquérir des connaissances portant sur des pratiques, des événements et/ou phénomènes historiques, culturels, sociaux, économiques et politiques en faisant varier ses représentations.
- * Développer son esprit critique.

Description du programme

- * L'enseignement des LCI comprend deux enseignements distincts par semestre : Anglais (30h) et une autre langue (30h). FLE pour les étudiants internationaux sauf si le niveau C1 est déjà validé.
- * Possibilité de débuter une LV3 selon les effectifs.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * La formation en Langues et Cultures est essentielle à l'identité de l'Ingénieur·e Centralien·ne qui devra être capable de communiquer et interagir à l'international avec des partenaires de langues et/ou cultures différentes, notamment dans un environnement professionnel.
- * Langues à maitriser : Français, Anglais + une autre langue choisie pour les élèves français.

Modalité de contrôle des connaissances

* 2 langues (50% chacune de la moyenne). Minimum de 7/20 pour chaque langue.

Les 5 compétences du CECRL seront évaluées (Modalités précisées par l'enseignant e).

- * Contrôle continu donc présence obligatoire : plus de 3 absences compromettront la validation du semestre.
- * Ces 60 heures de cours en présentiel sont complétées par 10h de travail personnel (travail en autonomie, recherches, exercices...) par langue et par semestre.
- * Les sessions 2 porteront sur les compétences non validées en 1° session et seront gérées individuellement par les enseignant·e·s.
- * Pour être diplômé.e, l'élève devra valider un niveau d'anglais CECRL B2+ (Toeic 850 ou équivalent) et un niveau B2 en FLE (élèves en Double Diplôme) ou un niveau 3 Orthodidacte Français langue maternelle.

Bibliographie

Selon le cours

Equipe pédagogique

- * Anglais: P. Atkinson, J. Airey, V. Durbec (responsable UE), M. McKimmie, M. Kobliska
- * Espagnol: C. Enoch (responsable LV2), S. Duran, S. Carmoni, E. Munoz, V. Bertrand, Sofia Carmoni
- * Allemand: D. Ortelli van Sloun
- * FLE: V. Hamel
- * Chinois: J. Dong
- * Japonais: K. Yoshida,
- * Italien: S. Canzonieri

Objectif de Développement Durable

Consommation et production responsables

Lutte contre le changement climatique

Egalité entre les sexes

Recours aux énergies renouvelables

Justice et paix

Réduction des inégalités

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Valérie Durbec

■ valerie.durbec@centrale-marseille.fr

Filières Métier

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Analyse des Données et Aide à la Décision (ADAD)	Module				
Les métiers de la data	Module	20h			2
Aide à la décision	Module	15h			2
Data-visualisation	Module	15h			2
Data-analyse	Module	15h			1
Production et exploitation de données	Module				1
Projet ADAD	Module				1
	Nature	СМ	TD	TP	Crédits
Audit & Conseil (AUC)	Module				
Conseil	Module	42h			3
Audit	Module	40h			3
Projet AUC	Module				3
	Nature	СМ	TD	TP	Crédits
Conception, Bureau d'Etudes (CBE)	Module				
Dimensionnement	Module	18h	22h		3
Conception de produit	Module	18h	22h		3
Projet CBE	Module				3
	Nature	СМ	TD	TP	Crédits
Entrepreneuriat (ENT)	Module	36h	4h		3
Fondamentaux du management	Module	28h			3
Entrepreneuriat	Module	37h	6h		3
Projet ENT	Module				3
	Nature	СМ	TD	TP	Crédits
Production & Logistique (PRL)	Module				
Gestion des opérations	Module	11h	12h	16h	3
Logistique industrielle	Module	16h	9h	16h	3
Projet PRL	Module	30h			3
	Nature	СМ	TD	TP	Crédits
Recherche & Développement (R&D)	Module				
Outils et méthodes pour la R&D et l'innovation	Module	23h			3
Organisation, contrats et valorisation de la recherche	Module	23h			3
Projet R&D	Module				3
	Nature	СМ	TD	TP	Crédits
Management Opérationnel (MO)	Module				9
319 / 675 WEI 675 Syllabus (2022-2023)	Module				3
Elective 2	Module				
Elective à confirmer	Module				2

Analyse des Données et Aide à la Décision (ADAD)

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Cette filière s'ancre dans le champ de la **data science** et permettra le développement des compétences et des connaissances en informatique, en mathématiques et en sciences sociales accessibles à tout ingénieur. L'objectif est de batîr un échaffaudage utile permettant aux étudiants de mieux apprécier et comprendre les métiers qui gravitent autour de l'utilisation de la donnée.

Description du programme

Public visé : élèves intéressés par les métiers de la data science. Cette filière est ouverte à tous, mais il faut n'avoir rien contre un peu de théorie ou l'écriture de lignes de codes si cela permet de résoudre un problème concret.

Certains travaux récents présentent les données comme le "nouvel or noir" du XXIème siècle. D'une part, les Big Data se caractérisent par le volume, la variété, la vélocité des données, désignant la disponibilité croissante de données dont la captation est facilitée au point de s'étendre à tous les domaines de la vie sociale et individuelle. L'expérience humaine, les relations sociales, les émotions elles-mêmes peuvent désormais être transformées en données.

D'autre part, sous l'influence croissante des sciences comportementales, l'exploitation et la valorisation des données permettent d'élaborer des solutions concrètes dans des domaines divers (marketing, ressources humaines, business intelligence, santé, développement économique ...).

Chaque domaine d'activité, chaque métier, chaque ingénieur produit et consomme ainsi chaque jour un nombre (de plus en plus) important de données qu'il faut pouvoir structurer, analyser et enfin exploiter.

Bien que le domaine de la *data* soit éminemment trans-disciplinaire et multi-sectoriel, l'apec (voir ce document : https://corporate.apec.fr/files/live/sites/corporate/files/Nos%20études/pdf/Les-metiers-de-la-data.pdf) distingue 3 grands types de métiers en autant de thématiques qui seront abordés dans cette filière :

- * production et collecte de données : data architecte et data engineer
- * analyse et valorisation/visualisation des données : data scientist et data analyst
- * protection et sécurisation des données : cybersécurité

A ces trois thèmes qui suivent le cycle de vie d'une donnée, on doit aussi y ajouter le thème (et donc des métiers associés) du développement durable. Cette thématique sera abordée sous deux angles : étude des méthodes et outils nécessaires à l'analyse de données environnementales et questionnement sur le coût environnemental induit par le stockage et le partage des données (maintien de serveur de plus en plus grand, coût du partage des données, via les NFT par exemple, etc etc).

Enfin, nous donnerons les principales clés et méthodes pour utiliser ses données dans le cadre d'un processus d'aide à la décision (recherche d'une solution optimale si elle existe ou d'une solution consensus si l'optimum n'existe pas.

Cette filière se décline en cinq volets et autant de semaines d'enseignements pour apporter des connaissances et des savoir-faire dans les domaines suivants :

- * les métiers de la data et les données d'entreprise
- * production et protection des données
- * data-analyse, recherche opérationnelle et méthodes d'aide à décision
- * data-visualisation : comprendre et faire comprendre ses données
- * data et développement durable

En plus des 5 semaines consacrées aux enseignements, la filière est constituée d'un projet où il s'agira d'utiliser les méthodes et techniques vues pour réaliser une analyse métier ou environnementale d'un jeu de données.

Cette formation sera dispensée sous la forme de cours et de conférences (plus de 50% des cours sont donnés par des professionnels du domaine), ainsi que sous la forme de projet et d'études de cas.

Quelques entreprises participant à la formation :

- * L'https://www.wavestone.com/fr/: grand groupe de conseil
- * La https://datactivist.coop/fr/: data-scientistes
- * La https://www.educanta.se: start-up data-driven consulting
- * L'https://www.stellantis.com/fr: grand groupe automobile
- * L'https://www.lesbros-avocats.com/: cabinets d'avocats spécialisées dans les données

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Manager de façon éthique et responsable
- * S'inscrire dans une vision stratégique
- * Maitriser la complexité

Modalité de contrôle des connaissances

* Contrôle continu

Equipe pédagogique

François Brucker

Pascal Préa

Laetitia Piet

Florian Magnani

Baptiste Rousset

Eduardo Matsumoto

Marguerite Lesbros

Objectif de Développement Durable

Accès à des emplois décents

Partenariats pour la réalisation des objectifs

Total des heures30hNouvelles heures d'enseignementProjets30h

322 / 675

Syllabus (2022-2023)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Les métiers de la data	Module	20h			2
Aide à la décision	Module	15h			2
Data-visualisation	Module	15h			2
Data-analyse	Module	15h			1
Production et exploitation de données	Module				1
Projet ADAD	Module				1
	Nature	СМ	TD	TP	Crédits
	Nature	СМ	TD	TP	Crédits
	Nature	CM	TD	TP	Crédits
	Nature	CM	TD	TP	Crédits
	Nature	CM	TD	TP	Crédits
	Nature	СМ	TD	TP	Crédits

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Les métiers de la data

Présentation

Total des heures 20h

20h

Nouvelles heures d'enseignement Cours Magistral

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Aide à la décision

Présentation

Total des heures 15h

Nouvelles heures d'enseignement Cours Magistral 15h

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

Data-visualisation

Présentation

Total des heures 15h

Nouvelles heures d'enseignement Cours Magistral 15h

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

Data-analyse

Présentation

Total des heures 15h

Nouvelles heures d'enseignement Cours Magistral 15h

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

Production et exploitation de données

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

Projet ADAD

Présentation

Total des heures 30h

30h

Nouvelles heures d'enseignement Projets

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

Audit & Conseil (AUC)

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Conseil	Module	42h			3
	Nature	СМ	TD	TP	Crédits
Audit	Module	40h			3
	Nature	СМ	TD	TP	Crédits
Projet AUC	Module				3

Conseil

Présentation

Total des heures 42h

Nouvelles heures d'enseignement Cours Magistral 42h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nicolas Clootens

■ nicolas.clootens@centrale-marseille.fr

Audit

Présentation

Total des heures 40h

Nouvelles heures d'enseignement Cours Magistral 40h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nicolas Clootens

■ nicolas.clootens@centrale-marseille.fr

Projet AUC

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Les entreprises, comme tout système vivant, sont régulièrement confrontées à des problèmes de développement, d'organisation et de stratégie. Le consultant accompagne les dirigeants des entreprises et les décideurs dans leurs décisions financières, stratégiques, de management et d'organisation. Le métier du consultant comporte des actions très diversifiées allant du diagnostic à la mise en place des solutions. La formation « Audit et Conseil » offre aux étudiants une vision globale du métier de consultant. La filière permet aux élèves de : découvrir les missions de base du métier ; définir son projet professionnel ; acquérir et compléter les compétences requises pour aborder son métier ; développer son potentiel de manager ; accélérer son employabilité.

Description du programme

Réalisation d'un projet pour le compte d'un "client" (entreprise) : Analyse d'une d'organisation - Audit financier d'une entreprise - Évaluation d'entreprise - Diagnostic de stratégie - Étude marché - Analyse de la crise financière - Webmarketing.

Modalité de contrôle des connaissances

Soutenance du projet + Rapport

Equipe pédagogique

- * Nicolas Clootens
- * Intervenants extérieurs

Objectif de Développement Durable

Accès à des emplois décents

Accès à une éducation de qualité

Partenariats pour la réalisation des objectifs

Total des heures

Nouvelles heures d'enseignement

Projets

30h 30h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nicolas Clootens

☑ nicolas.clootens@centrale-marseille.fr

Conception, Bureau d'Etudes (CBE)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Dimensionnement	Module	18h	22h		3
	Nature	СМ	TD	TP	Crédits
Conception de produit	Module	18h	22h		3
	Nature	СМ	TD	TP	Crédits
Projet CBE	Module				3

Dimensionnement

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Objectifs du programme

Optimisation de topologie

- * Se familiariser à l'introduction des concepts d'optimisation dans les processus de conception mécanique en ingénierie.
- * Appréhender un code industriel d'optimisation topologique en intégrant les différentes contraintes de fabrication
- * Mener à bien des projets de conception dans leur globalité.
- * Utilisation de Matlab-Simulink dans la démarche d'ingénierie système pour faire du dimensionnement énergétique
- * Apprentissage de la technique de modélisation par Matlab-Simulink
- * Réalisation d'un modèle de simulation à partir de Matlab-Simulink

Programme

Partie I: Initiation à l'optimisation topologique (Jean-Marie Rossi)

Partie II: Dimensionnement énergétique d'un système (Mohamed Boussak)

Description du programme

Optimisation de topologie

- * Les grandes classes de problèmes d'optimisation de structures
- * Focus sur l'optimisation topologique ; description des principaux concepts théoriques
- * Application de ces concepts sur un logiciel industriel d'optimisation de topologie
- * Pratique sur plusieurs études de cas
- * Evaluation par mini-projet

Dimensionnement énergétique d'un système

- * Introduction de Matlab
- * Principales fonctions et opérations élémentaires sous Matlab
- * Utilisation des fonctions
- * Graphique sous Matlab en 2D et 3D
- * Création et utilisation s-function
- * Introduction des boîtes à outils (Toobox) de Matlab
- * Simulation de systèmes dynamiques avec la boîte à outils Simulink

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Connaître le rôle et de la place de l'optimisation de structure dans le processus de conception d'une pièce mécanique.
- Savoir utiliser un code d'optimisation de topologie afin de mener à bien des études de cas industriels.
- Dimensionnement énergétique d'un système

Modalité de contrôle des connaissances

Examen en salle informatique sur logiciel Inspire : 2 h 50%

Examen en salle informatique sur logiciel (Matlab+Simulink): 2h 50%

Bibliographie

Copie des transparents du cours ; Polycopié : Initiation à Matlab

Introduction au calcul scientifique par la pratique : 12 projets résolus avec Matlab [ouvrage] . - 🗹 Dunod, impr. 2005 . - 1 vol. (XI-287 p.) : ill., couv. ill. en coul. ; 24 cm. - (🗹 Sciences sup) .

ISBN: 978-2-10-048709-7

Introduction to MATLAB 6 for engineers [ouvrage] / 🗹 William J. Palm (1944-), Auteur . - 🖸 McGraw-Hill, 2001 . - XIX-600 p. : ill. ; 24 cm + 1 booklet. - (🗹 Basic engineering series and tools) .

ISBN: 978-0-07-234983-2

Equipe pédagogique

Mohamed BOUSSAK (Matab + Simulink)

Jean-Marie ROSSI Optimisation de topologie

Total des heures		40h
Nouvelles heures d'enseignement	Cours Magistral	18h
Nouvelles heures d'enseignement	Travaux Dirigés	22h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Christian Jalain

christian.jalain@centrale-marseille.fr

Conception de produit

Présentation

Prérequis

Non

Objectifs d'apprentissage

Notions de Design

Sensibiliser les étudiants au croquis de Design

Maquettage numérique

Connaître les fonctionnalités de base d'un logiciel de Conception Mécanique

Caractéristiques de quelques procédés de Fabrication usuels

Connaître le vocabulaire sur les quelques procédés de fabrication et de transformation abordés.

Description du programme

Croquis de conception (4 séance 2h)

- Méthode d'apprentissage
- Représenter des volumes à l'aide des outils de perspective

- Travailler la perspective des volumes courbes
- Définir les échelles des objets, les matières et les couleurs
- · Dessiner le design de plusieurs produits

Maquettage Numérique (8 séance 4h)

- · Créer des pièces mécaniques : prismatiques et surfaciques
- · Contrôler des pièces en utilisant les contraintes de tracé, le paramétrage et les analyses
- · Créer des pièces mécaniques pour des procédés de fabrication : fonderie, plasturgie, tôlerie
- · Créer et animer un assemblage : statique et dynamique
- Produire une mise en plan de détail simple.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Maîtrise de la complexité et des systèmes

L'ingénieur centralien maitrise la complexité des systèmes et de problématiques qu'il rencontre

Capacité à stimuler son imagination, inventer des solutions au travers des études Design

Capacité à concrétiser par le biais de la représentation 3D en intégrant les notions de faisabilité.

Capacité à identifier les interactions entre éléments (collisions, enveloppe de mouvement, interférences géométrique).

Modalité de contrôle des connaissances

Contrôle continu, réalisation de 5 tutoriels : 100 %

Bibliographie

Documentation en ligne du logiciel CATIA

tutoriels de la plate-forme eduspace.3ds.com

Equipe pédagogique

* Christian Jalain

Total des heures		52h
Nouvelles heures d'enseignement	Cours Magistral	18h
Nouvelles heures d'enseignement	Travaux Dirigés	22h
Nouvelles heures d'enseignement	Apprentissage en Autonomie	12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Christian Jalain

christian.jalain@centrale-marseille.fr

Projet CBE

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Déploiement d'un projet multidisciplinaire, en équipe avec remise d'un dossier justificatif

Réalisation d'un projet de conception qui permette l'intégration des disciplines vues dans la filière.

Le projet peut se conclure par la recherche de sous-traitants (devis de réalisation) voire de réalisation d'une partie de la solution proposée.

Ventilation de la filière en groupes d'élèves de 3 à 4.

Comprendre la demande - traduire le besoin - proposer des solutions adaptées - justifier techniquement et dimensionner les solutions retenues – fournir maquettes numériques et simulations quand c'est possible.

Description du programme

8 à 10 séances planifiées encadrées par l'(es) enseignant(s) dans des salles équipées des logiciels enseignés dans le cursus.

Conception assistée par ordinateur - CATIA

Modélisation multi physiques des systèmes avec leur contrôle commande - MATLAB SIMULINK

Optimisation de Topologie - Inspire

Points clé:

recherche bibliographique

relation avec le client pour une définition commune du besoin à satisfaire

justification des résultat, compréhension et grandeur physique (résultats de simulation)

faisabilité (choix de procédés, intégration de composants existants)

maquette numérique la plus aboutie possible.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Création de la valeur par l'innovation scientifique et technique.

Appréhender toutes les dimensions scientifiques et techniques d'un projet.

Maitrise la complexité des systèmes.

Approfondir rapidement un domaine.

Développer des méthodes de travail, à organiser.

Modalité de contrôle des connaissances

Une soutenance intermédiaire et une soutenance finale. Une remise de dossier à la conclusion du projet. CC1 oral 10 % CC2 Oral 30% CC3 Ecrit 60%

Equipe pédagogique

- * Mohamed Boussak
- * Jean Marie Rossi
- * Christian Jalain

Total des heures 30h

Nouvelles heures d'enseignement

Projets

30h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Christian Jalain

christian.jalain@centrale-marseille.fr

Entrepreneuriat (ENT)

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Fournir aux élèves un premier aperçu du processus de création d'entreprise en soulevant toutes les questions attenantes auxquelles ils devront répondre le jour où ils seront directement concernés.
- * Les sensibiliser au sens qu'ils donneront à leur projet de création d'entreprise.
- * Partager des expériences vécues. Leur donner envie de se lancer dans l'aventure.

Description du programme

- Business plan (11h):

Dossier type, quelques éléments juridiques, construction de comptes prévisionnels, partage d'expériences

- Levée de fonds (3h):

Comprendre le processus de levée de fonds ; partage d'expérience

- **Pitch** (3h)
- Stratégie de propriété industrielle (3h)

- Ingénierie positive (5h) : sensibilisation aux low-tech
- **Activités diverses** : escape game entrepreneuriat, design numérique pour le maquettage, témoignages de créateurs/trices d'entreprise, de business angel, journée portes ouvertes de l'incubateur Impulse, 36h chrono de Pépite Provence, ...

Ces activités varient chaque année et sont organisées en fonction des opportunités proposées par l'écosystème entrepreneurial dont les dates coïncident avec les semaines de filière métier.

Compétences et connaissances scientifiques et techniques visées dans la discipline

C1: Innovation - composante Concrétiser et créer de la valeur - niveau compétent : élabore un business plan

Modalité de contrôle des connaissances

Business plan : évalué par le Projet de filière : note portant essentiellement sur la partie financière du livrable écrit remis dans le cadre des Entrep'

Levée de fonds : présence (regroupé avec Stratégie de l'UE Fondamentaux)

Pitch: présence (regroupé avec Stratégie de l'UE Fondamentaux)

Stratégie de P.I.: présence (regroupé avec Stratégie de l'UE Fondamentaux)

Ingénierie positive : présence

Activités diverses : présence

Equipe pédagogique

Hugues Chabalier

François Richard

Audrey Desserre

Isabelle Huynh

Mickael Lavallée

Incubateur national multimédia de la Belle de Mai

Françoise Perrin

Total des heures		40h
Nouvelles heures d'enseignement	Cours Magistral	36h
Nouvelles heures d'enseignement	Travaux Dirigés	4h

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Fondamentaux du management	Module	28h			3
	Nature	СМ	TD	TP	Crédits
Entrepreneuriat	Module	37h	6h		3
	Nature	СМ	TD	TP	Crédits
Projet ENT	Module				3

Infos pratiques

Nom responsable UE

Responsable pédagogique

Françoise Perrin

Fondamentaux du management

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Acquérir les connaissances permettant de lancer une activité nouvelle en ayant au préalable étudié au mieux le marché et son environnement économique.
- * Prendre conscience de ses capacités, et limites, de meneur d'équipe et de créateur d'entreprise. Approcher la notion de culture d'entreprise en lien avec celle du ou des créateurs, se projeter et donner du sens à une éventuelle création d'entreprise.
- * Comprendre les interrelations internes et externes d'une entreprise, savoir discerner ses forces et ses faiblesses dans son environnement concurrentiel.

Description du programme

* Marketing:

Macro et micro environnement du marché, segmentation, cible, positionnement, marketing-mix. Dimensionnement du marché, enquêtes terrain.

Éléments de différenciation.

Mise en application sur le projet mené dans le cadre des **Entrep' Aix-Marseille**, en relation avec la partie Business Plan de l'UE Entrepreneuriat.

* Contrôle de gestion :

Révision et approfondissement des notions de coûts analytiques vues en 1A.

Apprentissage des méthodes de contrôle de gestion actuelles.

Notions de tableaux de bords.

Mise en application sur une étude de cas menée tout au long du module, en groupes.

* Séminaire **Entrepreneurs de demain** : une expérience pour renforcer le désir d'entreprendre

Première journée hors les murs (Calanques) : marche d'inspiration (qu'est ce qu'un entrepreneur de demain, gestion de désir et de stress, réflexions personnelles sur ses motivations, vision, ambition ...)

Deuxième journée (à l'école) : retour sur les réflexions du jour 1 ; poursuite sur freins et motivations, carte des forces personnelles, projection à moyen terme.

* Stratégie d'entreprise :

En fin de filière métier, développement de thèmes à la demande par un « Manager de transition » : stratégie organisationnelle, stratégie financière, recrutements, fin de vie d'une entreprise, partage d'expériences, analyse stratégique d'évolution d'entreprises à partir d'articles, étude de cas ...

Notions principales de Stratégie de Propriété Industrielle

Processus, Avantages/Limites des levées de fonds

Compétences et connaissances scientifiques et techniques visées dans la discipline

L'élève doit être capable de :

- * dimensionner un marché, définir des segments et des cibles, détailler des persona, interroger des usagers correspondant aux persona, comprendre les différents réseaux de distribution et de communication
- * construire des budgets prévisionnels, comprendre les éléments principaux des bilans et compte de résultats d'une entreprise ; comprendre la comptabilité analytique
- * analyser ses aspirations et aptitudes entrepreneuriales ainsi que ses éventuels freins ; se projeter sur une ou des voies professionnelles à moyen terme
- * analyser une stratégie développée par une entreprise ; élaborer les grandes lignes de son entreprise ; définir une stratégie de Propriété Industrielle ; envisager une levée de fonds

Modalité de contrôle des connaissances

Marketing : évalué par le Projet de filière

Contrôle de gestion : étude de cas en groupes

Séminaire Entrepreneurs de demain : présence

Stratégie: présence

Equipe pédagogique

Annouk Arzoumanian

Delphine Chazalon

Michel Frsique

Olivier Besançon

Audrey Desserre

Hugues Chabalier

Objectif de Développement Durable

Consommation et production responsables

Accès à des emplois décents

Bâtir une infrastructure résiliente

Total des heures44hNouvelles heures d'enseignementCours Magistral28h

Séminaire Autres 16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Françoise Perrin

Entrepreneuriat

Présentation

Total des heuresNouvelles heures d'enseignementCours Magistral37hNouvelles heures d'enseignementTravaux Dirigés6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Françoise Perrin

Projet ENT

Présentation

Total des heures 30h

30h

Nouvelles heures d'enseignement Projets

Infos pratiques

Nom responsable UE

Responsable pédagogique

Françoise Perrin

Production & Logistique (PRL)

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Gestion des opérations	Module	11h	12h	16h	3
	Nature	СМ	TD	TP	Crédits
Logistique industrielle	Module	16h	9h	16h	3
	Nature	СМ	TD	TP	Crédits
Projet PRL	Module	30h			3

Gestion des opérations

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Notions à connaître :

- Contrôle de gestion
- Management de projet
- Connaissance de l'entreprise et de son organisation

Objectifs d'apprentissage

- * Comprendre les enjeux, les logiques et les concepts de base de la gestion des opérations, de la production et des flux.
- * Aborder par la pratique les mécanismes et les contraintes d'un ERP (Enterprise Ressource Planning).
- * Maîtriser les méthodes et les outils nécessaires à l'analyse, le pilotage et l'amélioration continue de tout système logistique ou de production.
- * Comprendre les grands principes du Lean Management.
- * Se familiariser avec les domaines incontournables qui gravitent autour de la production que sont : la gestion de la qualité et de la sécurité au poste de travail ainsi que la prévention des risques.

Description du programme

Cette UE comprend:

- un module sur l'organisation industrielle Les différentes fonctions au sein de l'entreprise et les données techniques qui y sont définies. La gestion des stocks et des approvisionnements (notions de coûts, de quantité économique, de stock de sécurité...). MRP, Management Ressource Planning (plan industriel et commercial, programme directeur de production, calcul des besoins, ordonnancement, suivi en fabrication). Approches globales sur l'excellence opérationnelle. - un module sur le contrôle qualité traitement statistique des données, contrôle statistique des processus, courbes d'efficacité et plan d'échantillonnage. - un module sur les ERP A l'aide d'un logiciel (ERP e-Prélude) les items suivants sont abordés : - données techniques (articles, nomenclatures, postes de charge et gammes de fabrication) - stockage et mouvements de stock - commandes clients - calcul des besoins nets - traitement des achats - ordonnancement - lancement et suivi de fabrication - calcul des coûts. - un module sur l'excellence opérationnelle Introduction au lean management (variabilités, gaspillages, auto-qualité, standards...) Optimisation des ressources techniques (TRS, flux, taille de lots, SMED...) Ces notions sont abordées au sein de mises en situation à l'usine école Dynéo.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Innovation scientifique et technique : identification des innovations de la production, leur utilité, les points de vigilances et choix des innovations pour optimisation

Maitrise de la complexité et des systèmes : complexité issue des systèmes industriels multi-acteurs, identification des problématiques et engagement de leurs résolutions

Management des hommes : tous les aspects du management d'équipe (rôle des acteurs de la production, gestion de conflit et coordination des acteurs)

Vision stratégique : définition d'une stratégie localisée et mise sous-contrôle de sa déclinaison opérationnelle.

Modalité de contrôle des connaissances

Organisation industrielle DS1 2h - 50%

Contrôle qualité DS2 1h30 - 30%

Lean Management et ERP CC1 - 20%

Bibliographie

Polycopiés de cours, logiciel ERP e-Prélude, Usine école Dynéo (ENSAM - Aix en Provence)

Equipe pédagogique

- * Florian Magnani
- * Cécile Loubet

Objectif de Développement Durable

Accès à des emplois décents

Consommation et production responsables

Bâtir une infrastructure résiliente

Total des heures 39h

Nouvelles heures d'enseignement Cours Magistral 11h

Nouvelles heures d'enseignement Travaux Dirigés 12h

Nouvelles heures d'enseignement Travaux Pratiques 16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Cécile Loubet

cecile.loubet@centrale-marseille.fr

Logistique industrielle

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Gestion opérationnelle

Connaissance de l'entreprise et de son organisation

Objectifs d'apprentissage

- * Comprendre les missions et les enjeux actuels des acteurs de la logistique et de la production, les difficultés qu'ils peuvent rencontrer et les clés pour les gérer.
- * Comprendre les applications concrètes en entreprise des déclinaisons stratégique et de la mise en place d'une gestion de la Supply Chain.
- * Développer une analyse managériale face à une problématique de la Supply Chain.
- * Connaître les théories de management visuel et d'observation des situations de production (analyser les contraintes par la pratique).

Description du programme

Cette UE comprend:

- un module sur la gestion de la supply chain

Cours et partage d'expériences sur les stratégies et le management de la logistique et de la Supply Chain, analyse de cas concrets par l'intermédiaire d'études de cas.

Mise en situation d'optimisation de flux amont et aval (maîtrise et réduction du lead time, planification, flux poussés / flux tirés, Kaizen, méthodologies, dimension humaine) autour d'un serious game

- un module sur les méthodologies d'observation et de management visuel

Cours, partage d'expérience avec un professionnel de PSA, confrontation sur le terrain

- une approche des concepts de l'industrie du futur

Compétences et connaissances scientifiques et techniques visées dans la discipline

Innovation scientifique et technique : identification des innovations de la Supply Chain, leur utilité, les points de vigilances et choix des innovations pour optimisation

Maitrise de la complexité et des systèmes : complexité issue des systèmes industriels multi-acteurs, identification des problématiques et engagement de leurs résolutions

Management des hommes : tous les aspects du management d'équipe (rôle des acteurs de la logistique, gestion de conflit et coordination des acteurs)

Vision stratégique : définition d'une stratégie transverse et mise sous-contrôle de sa déclinaison opérationnelle

Modalité de contrôle des connaissances

Management de la supply chain DS1, 2h - 45%

Management visuel et observations CC1 - 20%

Serious Game de la supply chain CC2 - 35%

Bibliographie

Polycopiés de cours

Christopher, M. (2016) Logistics and supply chain management: creating value-adding networks, FT Publishing International Prentice Hall, 5th edition

Chapman, S. N., Tony Arnold, J. R., Gatewood, A. K. and Clive, L. M. (2016) Introduction to Materials Management, Pearson, 8th edition

Equipe pédagogique

- * Florian Magnani
- * Cécile Loubet

Objectif de Développement Durable

Accès à des emplois décents

Consommation et production responsables

Villes et communautés durables

Total des heures		41h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	9h
Nouvelles heures d'enseignement	Travaux Pratiques	16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Cécile Loubet

□ cecile.loubet@centrale-marseille.fr

Projet PRL

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Gestion opérationnelle

Logistique industrielle

Objectifs d'apprentissage

- * Rendre les élèves acteurs de leur formation (auto-apprentissage et organisation d'équipe) autour d'un sujet donné ou choisi.
- * Fournir aux élèves un cadre concret pour mener à bien un projet permettant de mieux appréhender la réalité du monde de l'organisation industrielle et de la logistique.
- * Inciter les élèves à affiner leur projet professionnel en croisant leurs envies, leurs compétences et des cas concrets en entreprise.
- * Développer son aptitude à concevoir, planifier et réaliser un projet, à travailler en équipe, sous contraintes et à communiquer ses résultats.

Description du programme

Cette UE comprend:

- Etude de cas N°1 : analyser un problème concret d'organisation dans une entreprise. Proposer des améliorations en équipe.
- Etude de cas N°2 : analyser un problème concret de supply chain dans une entreprise. Proposer des améliorations en équipe.

- Simulation du Lean Management

Elle permet d'aborder l'ensemble des concepts du Lean Management. Les participants prennent des rôles dans le Comité de Direction d'une entreprise qui a décidé d'améliorer ses performances opérationnelles. Le projet progresse de façon méthodique :

tracer sur des affiches la cartographie détaillée des principaux processus,

repérer les différents Mudas (gaspillages) et la non-valeur ajoutée,

calculer les indicateurs de performance,

rechercher les causes de non-valeur ajoutée,

proposer des actions d'amélioration,

évaluer les risques,

mesurer les gains.

Les thèmes abordés couvrent les grandes fonctions de l'entreprise : achats, production, ventes, distribution, conception des nouveaux produits, finances, ressources humaines.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Direction de programme : aspects techniques (analyse du besoin, conception, planification, et suivi de projet) avec aspects organisationnels (parties prenantes, organisation, communication)

Management des hommes : tous les aspects du management d'équipe (rôle de chef de projet, de membres, et coordination des acteurs)

Modalité de contrôle des connaissances

CC1 - 100%

Bibliographie

Etudes de cas

Simulation du "Lean Management" - CIPE

Equipe pédagogique

- * Cécile Loubet
- * Florian Magnani

Objectif de Développement Durable

Accès à des emplois décents

Consommation et production responsables

Total des heures30hNouvelles heures d'enseignementCours Magistral30h

. .

Infos pratiques

Nom responsable UE

Responsable pédagogique

Cécile Loubet

cecile.loubet@centrale-marseille.fr

Recherche & Développement (R&D)

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Outils et méthodes pour la R&D et l'innovation	Module	23h			3
	Nature	СМ	TD	TP	Crédits
Organisation, contrats et valorisation de la recherche	Module	23h			3
	Nature	СМ	TD	TP	Crédits
Projet R&D	Module				3

Outils et méthodes pour la R&D et l'innovation

Présentation

Total des heures 23h

Nouvelles heures d'enseignement Cours Magistral 23h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Caroline Fossati

□ caroline.fossati@centrale-marseille.fr

Organisation, contrats et valorisation de la recherche

Présentation

Total des heures 23h

Nouvelles heures d'enseignement Cours Magistral 23h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Caroline Fossati

□ caroline.fossati@centrale-marseille.fr

Projet R&D

Présentation

Total des heures 64h

Nouvelles heures d'enseignement

Projets

64h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Caroline Fossati

□ caroline.fossati@centrale-marseille.fr

Management Opérationnel (MO)

En bref

> Langue de cours: Anglais, Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Cette filière se déroule entièrement à l'IAE d'Aix en Provence (Institut d'Administration des Entreprises).

Les objectifs sont liés aux choix de modules que chaque élève fera mais globalement :

- . Elargir ses compétences dans divers domaines du management d'entreprise
- . Apprendre à travailler avec des étudiants d'autres profils qu'ingénieurs et d'autres cultures
- . Vivre une expérience de type hackathon pour découvrir le processus de création d'entreprise en équipes
- . Apprendre à décider en équipes à travers un serious game (finance d'entreprise et négociation)

Description du programme

- * Participation au WEICube de l'IAE d'Aix ainsi qu'aux demies journées de préparation. Accélérateur d'entrepreneuriat pour les étudiants, le WEICube est un week-end complet consacré à faire émerger des idées de start-up et à réfléchir à leur faisabilité économique. Les équipes sont guidées par une soixantaine d'alumni ou de partenaires indsutriels.
- * Choix de deux « electives », modules de 24 heures, en français ou en anglais, proposés dans des menus fournis en septembre.

* Participation à un serious game construit et organisé par l'IAE. Le jeu se fait en équipes et approfondit la stratégie finanicère d'une entreprise en milieu concurrentiel.

Compétences et connaissances scientifiques et techniques visées dans la discipline

C1 : Innovation – composante Concrétiser et créer de la valeur – niveau compétent : élabore un business plan

Selon les modules choisis, les enseignements peuvent contribuer à l'acquisition des compétences C3 : Conduite de programmes – composante Piloter, conduire, C4 : Management éthique et responsable – composante Générer de la performance individuelle et collective, C5 : Vision stratégique – composante Construire et pérenniser

Modalité de contrôle des connaissances

Les modalités sont gérées par l'IAE d'Aix

Total des heures 0h

Liste des enseignements

	Nature	CM	TD	TP	Crédits
WEICUBE	Module				3
	Nature	СМ	TD	TP	Crédits
Elective 2	Module				
	Nature	СМ	TD	TP	Crédits
Elective à confirmer	Module				2
	Nature	СМ	TD	TP	Crédits

Infos pratiques

Nom responsable UE

Responsable pédagogique

Françoise Perrin

■ francoise.perrin@centrale-marseille.fr

WEICUBE

Infos pratiques

Nom responsable UE

Responsable pédagogique

Françoise Perrin

■ francoise.perrin@centrale-marseille.fr

Elective 2

Elective à confirmer

Elective à confirmer

Alternant (ALT)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Alternant Entreprise	Module				
	Nature	СМ	TD	TP	Crédits
Alternant Recherche	Module				
	Nature	СМ	TD	TP	Crédits
Alternant Entrepreneuriat	Module				

Alternant Entreprise

Alternant Recherche

Alternant Entrepreneuriat

Options d'approfondissement

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Photonique, images, communicaion, signal, sciences de la lumière (PICSEL)	Module				
Temps 1	Module				8
Fondamentaux de la Photonique	Module	80h		20h	8
Smart Systems	Module	70h	16h	14h	8
Telecom et IoT	Module	60h	10h	30h	8
Temps 2	Module				8
Imagerie Avancée pour le Biomédical	Module	70h	12h	10h	8
Images: Formation, Perception & Représentation	Module	66h	6h	22h	8
Science des données et apprentissage statistique	Module	44h	12h	18h	8
	Nature	СМ	TD	TP	Crédits
Matériaux et structures, fluides, mer (MECA)	Module				
Parcours Fluides : énergie, transports, environnement, santé (FETES)	Module				
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Turbulence	Module	16h	8h		2
Aérodynamique	Module	12h		12h	2
Électif à choisir dans le Menu 1	Module				2
Temps 2	Module				
Transferts turbulents	Module	16h	8h		2
Ecoulements diphasiques	Module	16h	8h		2
Ecoulements géophysiques	Module	16h		8h	2
Électif à choisir dans le Menu 2	Module				2
Parcours Génie Mer (GM)	Module				
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Hydrodynamique marine Première partie	Module				2
Ingénierie Côtière	Module				2
Abaqus	Module				2
Temps 2	Module				
Hydrodynamique marine Deuxième partie	Module				2
Sedimentologie et Mécanique des sols	Module				2
Génie Côtier	Module				2
Opérations Marines	Module				1
Corrosion	Module				1
Parcours Modélisation Mécanique des Matériaux et des Structures (M3S)	Module				
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Structures minces et instabilités	Module	16h	8h		2
378 / 675 mportement des matériaux - Plasticité Syllabus (2022-2023)	Module	14h	8h	2h	2
Outils logiciels en mécanique - Bases	Module	8h	2h	14h	2
Temps 2	Choix				

Photonique, images, communicaion, signal, sciences de la lumière (PICSEL)

Présentation

Objectifs d'apprentissage

PICSEL vise à former des ingénieurs pouvant répondre aux besoins liés à l'émergence de la société numérique : explosion des systèmes embarqués, objets communicants, besoins croissants en transmission et traitement de l'information, multiplication de smart devices, place grandissante de la simulation numérique, développement de nouvelles technologies de fabrication,...Les sciences liées aux thématiques de PICSEL font parties des 6 technologies génériques d'avenir (KET) identifiées par la Commission européenne, qui les considère comme les principaux moteurs de l'innovation.

Description du programme

Pour répondre à ces enjeux PICSEL propose un programme principalement basé sur des électifs qui permettra aux élèves de construire des parcours personnalisés centrés sur la Photonique et les Sciences de l'Information et de la Communication, avec de fortes compétences dans les domaines clés de l'imagerie et de la photonique, et une connaissance approfondie de la physique sous-jacente. Des comptabilités seront possibles avec des électifs externes (autre option de 3A apportant un complément thématique, Master Recherche).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Les technologies liées à la Photonique, l'Image, la Communication et le Signal se caractérisent par leur capacité à irriguer de très nombreux secteurs industriels et domaines applicatifs, ainsi que leur forte intensité de R&D. Elles nourrissent des marchés très concurrentiels et en forte croissance (environnement, santé, automobile, aéronautique etc.), et recouvrent des domaines variés tels que les systèmes connectés, les véhicules autonomes, la réalité virtuelle, l'imagerie médicale,...

Dans ces secteurs l'ingénieur PICSEL pourra adresser aussi bien la gestion de projets complexes grâce à ses compétences généralistes et sa vision du domaine que la R&D de pointe par ses capacités de conceptualisation, de résolution de problèmes, et un esprit formé à l'innovation.

Total des heures 0h

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Temps 1	Module				8
Fondamentaux de la Photonique	Module	80h		20h	8
Smart Systems	Module	70h	16h	14h	8
Telecom et IoT	Module	60h	10h	30h	8
	Nature	СМ	TD	TP	Crédits
Temps 2	Module				8
Imagerie Avancée pour le Biomédical	Module	70h	12h	10h	8
Images: Formation, Perception & Représentation	Module	66h	6h	22h	8
images. Formation, refeeption a representation	Module	0011	OH	2211	O

Temps 1

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Fondamentaux de la Photonique	Module	80h		20h	8
	Nature	СМ	TD	TP	Crédits
Smart Systems	Module	70h	16h	14h	8
	Nature	СМ	TD	TP	Crédits
Telecom et IoT	Module	60h	10h	30h	8

Fondamentaux de la Photonique

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Non

Objectifs d'apprentissage

Cette UE est destinée aux élèves qui souhaitent renforcer leurs connaissances dans les domaines de la photonique, de l'optique et de l'électromagnétisme. Les débouchés sont nombreux tant dans les grands groupes que dans les PME, pour des métiers allant des bureaux études à la R&D, dans les secteurs de la défense, de l'aéronautique ou du biomédical...

L'enseignement se décomposera en deux grands thèmes : (1) la génération et (2) la propagation de la lumière.

Description du programme

Génération de lumière :

Cette thématique sera essentiellement consacrée à l'étude des Lasers qui est un instrument omniprésent dans l'industrie du XXIe siècle. L'enseignement débutera par les aspects fondamentaux de l'émission Laser et se conclura par l'intervention d'industriels (Thales, Leukos, Amplitude-Systèmes...) sur les derniers développements techniques dans les Lasers impulsionnels de puissance ou les Super-continuums blancs... D'autres sources récentes (nano-antennes, boites quantiques, nano-diamants, marqueurs fluorescents) utiles dans des domaines très variés comme l'imagerie biomédicale, la cryptographie quantique ou les nanotechnologies... seront également étudiées.

Propagation de la lumière :

Cette partie débutera par un rappel des concepts fondamentaux de l'optique ondulatoire (Interférométrie, diffraction) et de l'électromagnétisme (ondes planes, polarisation, dispersion et causalité) afin d'étudier des domaines plus spécifiques comme la polarimétrie, les milieux (diélectriques, chiraux, conducteurs ou magnétiques) et l'optique non linéaire.

Structure de l'enseignement :

Les cours/TD seront complétés par des TP expérimentaux : Montage et réglage d'un Laser impulsionnel, Génération de 2nd harmonique, Etude d'une diode laser, Modulations électro- ou acousto-optique, Polarisation et Spectroscopie.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Electromagnétisme et ondes planes, Fondamentaux sur les Lasers, Lasers impulsionnels et applications, Optique non linéaire, Polarisation avancée, Interférométrie et Advanced Electromagnetics (cours commun avec le Master Europhotonics)

Les cours/TD seront complétés par des TP expérimentaux : Montage et réglage d'un Laser impulsionnel, Génération de 2nd harmonique, Etude d'une diode laser, Modulations électro- ou acousto-optique, Polarisation et Spectroscopie.

Modalité de contrôle des connaissances

CC1 = 6 écrits d'une heure chacun = 80 %

CC2 = 4 Comptes rendus de TP = 20 %

Bibliographie

- « Ondes Lumineuses », Champeau
- « Electrodynamique classique », Jackson
- « Électromagnétisme », Pérez
- « Optique non-linéaire », Sanchez
- « Polarisation de la lumière », Huard

Equipe pédagogique

- Miguel Alonso

- Laurent Gallais
- Jean Bittebierre
- Frédéric Lemarquis
- Nicolas Sandeau
- Julien Fade
- Frédéric Zolla
- Intervenants extérieurs

Objectif de Développement Durable

Accès à la santé

Lutte contre le changement climatique

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	80h
Nouvelles heures d'enseignement	Travaux Pratiques	20h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nicolas Sandeau

■ nicolas.sandeau@centrale-marseille.fr

Smart Systems

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- Connaître les fondamentaux des systèmes intelligents
- Connaître et savoir mettre en œuvre les méthodes de détection, de communication et d'analyse
- Aborder les technologies et maîtriser quelques techniques de traitement de données
- Réaliser un travail relatif aux systèmes intelligents
- Mettre à profit les enseignements dispensés dans le cas d'un projet pluridisciplinaire

Description du programme

Les systèmes intelligents font maintenant partie de notre quotidien comme en témoigne l'existence de nombreuses applications qui s'appuient sur les paradigmes de l'intelligence artificielle (IA). Les systèmes intelligents sont des systèmes qui incluent des processus, fondés sur plusieurs théories pour reproduire quelques comportements humains, afin de réaliser une tâche ou un ensemble de tâches. Cette unité d'enseignement vise à fournir une vue d'ensemble et une introduction au domaine croissant et de plus en plus stratégique de l'intégration de systèmes intelligents. Ces systèmes deviennent omniprésents et peuvent être présents dans tous les domaines. Ce cours permettra d'acquérir les principaux fondamentaux et les technologies des systèmes intelligents et

leur intégration. Les systèmes intelligents associent le traitement des données souvent massives et/ou hétérogènes (Big Data) à la détection, à l'actionnement et à la communication, et sont capables d'analyser des situations complexes, de prendre des décisions autonomes et d'être prédictifs et sécurisés. La miniaturisation de ces systèmes les rend très économes en énergie voire autonomes en énergie et peuvent communiquer avec d'autres systèmes. Le cours décrira aussi les progrès réalisés dans le monde académique et dans l'industrie à l'aide d'exemples tirés de divers secteurs industriels. Dans l'industrie, les solutions de systèmes intelligents intégrés sont des éléments fondamentaux de l'écosystème de l'Industrie 5.0.

Les techniques sous-jacentes permettant de tels systèmes seront décrites en parallèle aux processus utilisés pour créer ces technologies.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Maitriser la complexité des systèmes et les problèmes associés
- * S'inscrire dans une vision stratégique et savoir la mettre en œuvre
- Savoir conduire des programmes
- * Créer de la valeur par l'innovation scientifique et technique

Modalité de contrôle des connaissances

Contrôle continu

Bibliographie

Notes de cours

Equipe pédagogique

- S. Bourennane
- C. Fossati
- T. Gaidon

Intervenants industriels

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	70h
Nouvelles heures d'enseignement	Travaux Dirigés	16h
Nouvelles heures d'enseignement	Travaux Pratiques	14h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Salah Bourennane

■ salah.bourennane@centrale-marseille.fr

Telecom et IoT

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Traitement du signal, électronique numérique et analogique, programmation en Matlab

Objectifs d'apprentissage

L'ingénierie des systèmes de télécommunications sans-fil et d'Internet des objets (IoT) est une expertise qui permet aux futurs diplômés de s'insérer dans ce secteur économique en plein essor notamment avec l'émergence des objets connectés massifs et le déploiement des réseaux 5G. A l'issu de ce cours, les étudiants auront acquis le savoir-faire nécessaire pour mettre en œuvre les technologies de la nouvelle génération des réseaux avec une grande efficacité énergétique et spectrale. Ils pourront faire valoir leurs connaissances dans de nombreuses applications émergentes, en particulier celles relevant des futurs smart-cities et smarthomes. Aussi ils pourront jouer le rôle du conseil pour la mise en place des nouveaux réseaux et sur les technologies à choisir pour interconnecter des devices pour les clients de l'IoT.

Description du programme

Ce module donne aux élèves les fondements des télécommunications et une bonne compréhension des systèmes, en mettant l'accent sur les applications, ce qui leur permet d'acquérir des compétences solides constituants des systèmes de transmissions numériques, en particulier sans-fil. Outre les systèmes classiques déployés massivement à ce jour, seront abordés les systèmes avancés de communication qui sont considérés comme des niches technologies, notamment en lien avec les applications relevant de l'IoT, et les principaux défis pour le déploiement de ces systèmes.

* Transmissions numériques :

Traitement de l'information pour les systèmes de télécoms; Techniques d'émission et de réception; Milieu (canal) de transmission et les perturbations associées; Protocoles de transmission; Systèmes multi-utilisateurs; Radio intelligente, antennes intelligentes et systèmes MIMO; Consommation énergétique de systèmes/réseaux; Protocoles quantiques de transmission et cryptographie quantique; Sécurité de transmission; Futurs réseaux 6G et Internet tactile; Réseaux non-terrestres : par satellites (Starlink, Oneweb, etc.), HAPs et drones; Communications sous-marines; Étude de marketing, marché des télécoms

* Applications:

Transmissions sans-fil: Téléphonie mobile (en particulier les réseaux 4G, 4G+, 5G et 5G+), réseaux locaux (Wi-Fi), étendus (WiMAX, LPWAN) et personnels (Bluetooth, Zigbee...); Réseaux de capteurs, réseaux « smart grids »,...; Transmissions filaires : ADSL, courant porteur,...; Communications satellitaires; Communications optiques par fibre, optique sans fil (communications laser, Li-Fi, éclairage intelligent...); loT industriel et loT pour les environnements intelligents (smart city et smart home, e-health, usines du futur); WebService et interface avec le Cloud; Fog networking...

Compétences et connaissances scientifiques et techniques visées dans la discipline

Modélisation et simulation des chaînes de transmission numérique et analyse de performances (langages Matbal, C)

Programmation des interfaces avec des réseaux de capteurs, récupération des données et leur traitement (langage Node.js)

Compréhension et maîtrise des communications numériques avec des maquette de transmission (radio-fréquences, ultra-son et optique)

Maîtrise des différentes technologies de communication, notamment les plus avancées pour les réseaux de télécommunication émergeants

Modalité de contrôle des connaissances

Contrôles continus, mini-projets, travaux pratiques

Bibliographie

- [1] Goldsmith, Wireless Communications, Cambridge University Press, 2005.
- [2] A. Lapidoth, A Foundation in Digital Communication, Cambridge University Press, 2009.
- [3] U. Madhow, Fundamentals of Digital Communication, Cambridge University Press, 2008.
- [4] S. Dimitrov et al., Principles of LED Light Communications: Towards Networked Li-Fi, Cambridge University Press, 2015.
- [5] M. Sakidu, Optical and Wireless Communications: Next Generation Networks, CRC Press, 2002.

Equipe pédagogique

Jean-Christophe Antona

Nicolas Bertaux

Thomas Durt,

Ali Khalighi,

« conférenciers industriels »

Objectif de Développement Durable

Villes et communautés durables

Total des heures		110h
Cours magistral	Cours Magistral	60h
Travaux Pratiques	Travaux Pratiques	30h
Travaux Dirigés	Travaux Dirigés	10h
Apprentissage en Autonomie	Apprentissage en Autonomie	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Mohammad Ali Khalighi

■ ali.khalighi@centrale-marseille.fr

Temps 2

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Imagerie Avancée pour le Biomédical	Module	70h	12h	10h	8
	Nature	СМ	TD	TP	Crédits
Images: Formation, Perception & Représentation	Module	66h	6h	22h	8
	Nature	СМ	TD	TP	Crédits
Science des données et apprentissage statistique	Module	44h	12h	18h	8

Imagerie Avancée pour le Biomédical

Fn bref

> Langue de cours: Anglais, Français

Présentation

Prérequis

Lois de l'optique géométrique

Les équations aux dérivées partielles, équations de Maxwell

Objectifs d'apprentissage

Connaître les fondements de l'imagerie pour le biomédical et pour la biologie en allant de l'interaction entre les ondes et la matière jusqu'au traitement des images obtenues.

Connaître différentes techniques d'imagerie incluant à la fois l'acquisition et la restitution de l'image à toutes les échelles du vivant, in vivo ou in vitro pour des applications en biologie ou médecine.

Avoir un aperçu des problématiques et des besoins actuels et futurs dans le secteur.

Description du programme

- * Introduction : imagerie médicale :
- les domaines spectraux, la qualité des images, la formation des images, l'imagerie par rayons X, imagerie nucléaire, l'imagerie optique (l'OCT), thérapie par laser

* Les bases du TI (Traitement de l'Image):

- image numérique, filtrage, segmentation, restauration et problèmes inverses.

* Tomographie:

Reconstruction d'image 3D

* Traitement d'image multidimensionnelle :

- machine learning et deep learning pour la classification

* Optique géométrique

notions de base de l'optique géométrique, application aux microscopes

* Principes physique de l'organisation d'une cellule vivante

- les termes définissant le vivant, les interactions mises en jeu, la notion de compartimentation physico-chimique de la cellule, sa dynamique d'organisation spatio-temporelle.
- Comprendre les paramètres décrivant la compléxité du vivant grâce aux instruments (microscopie électronique et microscopie photonique)

* Imaging biological systems:

- Cell imaging: The optical Microscope, Fluorescence microscopy, Vibrational microscopies, Superresolution techniques. Advanced optical microscopy techniques, applications
- Tissue imaging and biomedical applications: Introduction to biological tissue optics, contrasts, (absorption, fluorescence, scattering), Model of light propagation, Instrumentation and imaging/diagnostic setups examples

* Imagerie biomédicale ultrasonore

Principe de base de l'échographie, Imagerie ultrasonore quantitative, microstructures tissulaires, principe de l'élastographie, biomarqueurs, imagerie de contraste

* Les capteurs biophotoniques :

- Principe de la résonance plasmon de surface et volume - application à l'imagerie microfluidique et à la détection d'agents pathogènes

* MRI: Magnetic Resonance Imaging

- Cérimed (visite)
- Les bases de l'IRM: propriétés magnétiques, polarization, resonance, relaxation, reconstruction d'images
- De la théorie aux applications médicales en passant par les équipements

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 (innovation scientifique et technique) : la bonne connaissance des fondements de l'imagerie pour le biomédical et pour la biologie, associés à une mise en perspective de l'application et des problématiques pour les médecins et/ou les biologistes, permettra de mettre en évidence le potentiel de ces techniques.
- C2 (maitrise de la complexité des systèmes) : ce cours permet d'appliquer et de compléter les notions de physique et de traitement des images dans le cas de la matière vivante, qui, par nature, est un système complexe.

Modalité de contrôle des connaissances

Contrôle continu:

- * 45% devoir surveillé sur table
- * 45% compte-rendu de TP
- * 10% travail personnel en autonomie (analyse de documents)

Bibliographie

- [1] I.N. Bankman, Handbook of Medical Image Processing and Analysis (2009)
- [2] Valery Tuchin, Tissue optics: Light scattering methods and instruments for medical diagnosis, 3e édition (2015)
- [3] Marcel Locquin et Maurice Langeron, Handbook of Microscopy, 1re edition (1983)

Equipe pédagogique

- Laetitia ABEL-TIBERINI
- Guillaume BAFFOU
- Salah BOURENNANEY
- Anabela DA SILVA
- Emilie FRANCESCHINI
- Frédéric LEMARQUIS
- Muriel ROCHE
- Julien SEIN

Objectif de Développement Durable

Villes et communautés durables

Total des heures		100h
Cours Magistral	Cours Magistral	70h
Travaux Dirigés	Travaux Dirigés	12h
Travaux Pratiques	Travaux Pratiques	10h
Apprentissage en Autonomie	Apprentissage en Autonomie	4h
Autres	Autres	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laetitia Abel-Tiberini

■ laetitia.abel-tiberini@centrale-marseille.fr

Images: Formation, Perception & Représentation

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

L'objectif de ce module est de présenter les maillons essentiels d'une chaîne d'imagerie : des fondamentaux de la formation des images aux technologies matérielles pour acquérir puis restituer l'image à l'humain, en passant par le traitement et l'analyse des images par une machine pour en extraire l'information. Il apportera les connaissances de base de chacune des briques technologiques de cette chaîne et les éléments fondamentaux concernant la vision humaine et machine.

Ces acquis pourront être mis en œuvre pour comprendre, dimensionner, développer et intégrer des applications dans le domaine de l'imagerie.

Description du programme

Que cela soit dans les domaines industriels, médicaux, scientifiques ou dans notre quotidien, l'image est au cœur de nombreux systèmes et applications :

- L'imagerie médicale qui joue un rôle clé pour le diagnostic, la surveillance et le traitement des maladies humaines
- La réalité augmentée et les technologies d'affichage 3D qui transforment l'interaction de l'humain avec son environnement

- Les systèmes autonomes basés sur l'intégration d'algorithmes d'intelligence artificielle et de traitement de données aux systèmes de vision
- Sources d'observation, de prévention des risques, de surveillance environnementale issues de l'imagerie embarquée (drones) ou satellitaire
- Vision industrielle pour le contrôle qualité, l'observation en milieu hostile, la robotique...

Le cours est structuré en plusieurs parties:

- Bases physiques de la formation d'images
- Capteurs d'images
- Perception visuelle
- Systèmes d'affichage
- Bruit, estimation et apprentissage,
- -Traitements des images

Les cours seront complémentés par des travaux pratiques, expérimentaux sur la plateforme Photonique, et numériques sur PC.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Ingénieurs capables de travailler sur des Systèmes complexes basés sur l'imagerie, que ce soit pour effectuer la mise en place d'une chaîne d'imagerie pour une application, des traitements à partir d'images numériques, le suivi d'affaires ou de projets mettant en œuvre des Systèmes d'acquisition et de traitements complexes dans l'image et le multimédia.

Modalité de contrôle des connaissances

CC1 = écrits = 25 %

CC2 = Comptes rendus = 75 %

Bibliographie

Handbook of Visual Display Technology, Springer, 2016 (L'https://link.springer.com/referencework/10.1007/978-3-319-14346-0).

Raphël C. Gonzalez and Richard E. Woods, Digital Image processing, Third edition Pearson 2007.

1. Saporta « Probabilité Analyse des données et statistique » - Editions Technip 1990.

P.H. Garthwaite, I.T. Jolliffe and B. Jones « Statistical Inference » - Prentice Hall 1995.

Ph. Réfrégier « Noise theory and application to physics » - Springer 2003.

Equipe pédagogique

- Caroline Fossati
- Laurent Gallais-During
- Frédéric Lemarquis
- Muriel Roche (responsable)
- Philippe Réfrégier

Total des heures		100h
Cours Magistraux	Cours Magistral	66h
TD	Travaux Dirigés	6h
TP	Travaux Pratiques	22h
Autres	Autres	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Muriel Roche

■ muriel.roche@centrale-marseille.fr

Science des données et apprentissage statistique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Cours de Tronc Commun de mathématiques et de traitement du signal de première année de l'École Centrale de Marseille.

Objectifs d'apprentissage

Acquérir les connaissances et les savoir-faire essentiels sur les méthodes de traitement des données et d'apprentissage pour les sciences de l'ingénieur (physique appliquée, qualité, conseil, gestion des risques, ingénierie des systèmes complexes, logistique, etc). Un large éventail de méthodes est présenté avec une attention particulière apportée sur leur fondement, leur mise en œuvre et leurs limites. Ces méthodes sont illustrées par des exemples tirés de divers domaines d'applications.

Description du programme

- * Modélisation des données et des incertitudes,
- * Techniques d'estimation et d'apprentissage,
- * Techniques de décision (probabilistes, bayésiennes, réseaux de neurones artificiels),
- * Modèles corrélés (analyse et techniques markoviennes),
- Grandes déviations et évènements rares,
- * Apprentissage non-supervisé et estimation non-paramétrique.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir définir, mettre en œuvre et caractériser différents systèmes de traitement des données pour de nombreux domaines d'activités,
- * Maîtriser les fondements de l'analyse des données issues des systèmes industriels, physiques ou pour la gestion de projet au sens large,
- * Acquérir une expertise critique sur le choix et les limites des méthodes de traitement de données et d'apprentissage,
- Comprendre les facteurs essentiels intervenant dans les systèmes complexes.

Modalité de contrôle des connaissances

* CC1 écrits: 50%

* CC2 compte rendus: 50%

Bibliographie

- * Ph. Réfrégier « Noise theory and application to physics » Springer 2003.
- * G. Saporta « Probabilité Analyse des données et statistique » Editions Technip 1990.
- * P.H. Garthwaite, I.T. Jolliffe and B. Jones « Statistical Inference » Prentice Hall 1995.
- * T.M. Cover and J.A. Thomas « Elements of information theory» Wiley 2006.
- * A. Ruegg « Processus stochastiques Avec applications aux phénomènes d'attente et de fiabilité » Presses Polytechniques et universitaires romandes 1989.

Equipe pédagogique

- * G. Berardi
- * J. Fade
- * F. Galland
- * Ph. Réfrégier

Objectif de Développement Durable

Accès à une éducation de qualité

Total des heures 100h

Nouvelles heures d'enseignement	Cours Magistral	44h
Nouvelles heures d'enseignement	Travaux Dirigés	12h
Nouvelles heures d'enseignement	Travaux Pratiques	18h
Nouvelles heures d'enseignement	Projets	20h
Nouvelles heures d'enseignement	Autres	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Julien Fade

julien.fade@centrale-marseille.fr

Matériaux et structures, fluides, mer (MECA)

	Nature	СМ	TD	TP	Crédits
Parcours Fluides : énergie, transports, environnement, santé (FETES)	Module				
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Turbulence	Module	16h	8h		2
Aérodynamique	Module	12h		12h	2
Électif à choisir dans le Menu 1	Module				2
Temps 2	Module				
Transferts turbulents	Module	16h	8h		2
Ecoulements diphasiques	Module	16h	8h		2
Ecoulements géophysiques	Module	16h		8h	2
Électif à choisir dans le Menu 2	Module				2
	Nature	СМ	TD	TP	Crédits
Parcours Génie Mer (GM)	Module				
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Hydrodynamique marine Première partie	Module				2
Ingénierie Côtière	Module				2
Abaqus	Module				2
Temps 2	Module				
Hydrodynamique marine Deuxième partie	Module				2
Sedimentologie et Mécanique des sols	Module				2
Génie Côtier	Module				2
Opérations Marines	Module				1
Corrosion	Module				1
	Nature	СМ	TD	TP	Crédits
Parcours Modélisation Mécanique des Matériaux et des Structures (M3S)	Module				
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Structures minces et instabilités	Module	16h	8h		2
Comportement des matériaux - Plasticité	Module	14h	8h	2h	2
Outils logiciels en mécanique - Bases	Module	8h	2h	14h	2
Temps 2	Choix				
4 électifs à choisir dans les Menus 2 et 3	Module				
	Nature	СМ	TD	TP	Crédits
Electifs	Module				
Menu 1	Module				
402 Agragooustique Syllabus (2022-2023)	Module	16h	8h		2
Biomécanique et micro hydrodynamique	Module	16h	4h	4h	2
Menu 2	Choix	1 311	***		_
Interactions fluido etruaturo	Modulo	12h		12h	2

Parcours Fluides : énergie, transports, environnement, santé (FETES)

	Nature	CM	TD	TP	Crédits
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Turbulence	Module	16h	8h		2
Aérodynamique	Module	12h		12h	2
Électif à choisir dans le Menu 1	Module				2
	Nature	СМ	TD	TP	Crédits
Temps 2	Module				
Transferts turbulents	Module	16h	8h		2
Ecoulements diphasiques	Module	16h	8h		2
Ecoulements géophysiques	Module	16h		8h	2
Électif à choisir dans le Menu 2	Module				2

Temps 1

	Nature	СМ	TD	TP	Crédits
Ondes en mécanique	Module	8h	8h	8h	2
	Nature	СМ	TD	TP	Crédits
Turbulence	Module	16h	8h		2
	Nature	СМ	TD	TP	Crédits
Aérodynamique	Module	12h		12h	2
	Nature	СМ	TD	TP	Crédits
Électif à choisir dans le Menu 1	Module				2

Ondes en mécanique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Bases en mécanique des milieux continus (UE 1A/Mécanique)

Objectifs d'apprentissage

- Découvrir la large gamme de phénomènes courants relevant des ondes et des vibrations
- Être capable d'appréhender les phénomènes dynamiques en mécanique (des solides, fluides et en acoustique)
- · Savoir distinguer les notions d'onde et de vibration et connaître les formalismes dédies
- · Maîtriser les outils théoriques de base afférents à ces notions
- · Savoir utiliser des outils numériques pour résoudre différents types de problèmes

Description du programme

- · Rappels de cours et introduction aux phénomènes d'onde et de vibration dans différents médias
- Introduction de la dimension temporelle en MMC et conséquences
- -- Notion d'onde

- -- Formalisme des ondes
- -- Différents types d'équations et de solutions
- · Introduction des conditions aux limites
- -- Ondes stationnaires et vibrations
- -- Modes propres
- · Outils et méthodes
- -- Théorème Pi de Buckingham et applications
- -- Transformée de Fourier, TFD, critère de Shannon
- -- Condition CFL
- · Introduction à l'acoustique non linéaire
- -- Équations constitutives dans le cas non linéaire non visqueux
- -- Équations constitutives dans le cas non linéaire visqueux
- -- Applications de l'acoustique non linéaire

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Savoir modéliser des problèmes dynamiques
- · Savoir identifier les paramètres caractéristiques d'un problème
- Savoir définir la méthodologie de résolution d'un problème dynamique
- · Savoir identifier des phénomènes dynamiques complexes type instabilité ou chaos

Modalité de contrôle des connaissances

• CC1: Comptes-rendus de TP (50%)

• CC2 : rédaction d'un dossier scientifique (50%)

Bibliographie

- Billingham, J., & King, A. (2001). Wave Motion (Cambridge Texts in Applied Mathematics). Cambridge: Cambridge University Press. doi:10.1017/CB09780511841033
- G. B. Whitham, "Linear and Nonlinear Waves," John Wiley & Sons Inc., Hoboken, 1999. doi:10.1002/9781118032954
- Sirven, Les ondes : du linéaire au non linéaire, Dunod, 1999.

Equipe pédagogique

- Bruno Cochelin
- · Daniel Mazzoni

Total des heures		24h
CM	Cours Magistral	8h
TD	Travaux Dirigés	8h
TP	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Daniel Mazzoni

■ daniel.mazzoni@centrale-marseille.fr

Turbulence

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Dans ce module, on présente les mécanismes de développement des instabilités hydrodynamiques et l'apparition de la turbulence. À la fois du point de vue de la description phénoménologique et du point de vue de la mise en équation des phénomènes associés dans le cadre d'une approche linéarisée. Puis on s'intéresse à la modélisation de la turbulence en présentant les principales méthodes de modélisation des écoulements turbulents, en mettant en avant les avantages et les faiblesses de chacune d'elles.

Description du programme

Ce module présente les éléments classiques de la théorie linéaire de développement des instabilités (notions de seuil, de modes propres...) et les applique ensuite à différentes situations (instabilités de Kelvin-Helmholtz, de Rayleigh-Bénard, ondes de capillaritégravité). Puis on traite de l'apparition de la turbulence et de la nécessaire utilisation de la décomposition de Reynolds. La suite de ce module présente alors les modèles les plus usuels de turbulence au 1er ordre, avec les spécificités de chacun.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir modéliser et analyser des écoulements turbulents, en choisissant le modèle plus pertinent (C2)
- * Maîtriser les méthodes de modélisation/simulation numérique des écoulements turbulents (C2)

Modalité de contrôle des connaissances

DS: devoir surveillé, 100%

Bibliographie

- 1. Abid, M., Anselmet, F., Kharif, C. (2017). Instabilités hydrodynamiques et Turbulence. CEPADUES.
- 2. Charru, F. (2007). Instabilités hydrodynamiques (SAVOIRS ACTUELS) (French Edition). EDP SCIENCES.
- 3. Chassaing, P. (2000). Turbulence en mécanique des fluides: analyse du phénomène en vue de sa modélisation à l'usage de l'ingénieur. Cépaduès éditions.

Equipe pédagogique

Fabien Anselmet (ECM)

Malek Abid (AMU)

Objectif de Développement Durable

Recours aux énergies renouvelables

Lutte contre le changement climatique

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirinés	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Anselmet

■ fabien.anselmet@centrale-marseille.fr

Aérodynamique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Dans ce cours d'aérodynamique les compétences et connaissances visées correspondent au niveau minimal requis, soit pour interagir avec des spécialistes de ces domaines ou traiter par soi-même des problèmes classiques courants, soit pour approfondir ces connaissances par la lecture d'ouvrages spécialisés ou par la participation à des formations complémentaires spécialisées.

Description du programme

Ce module présente la théorie dite de « l'aile mince », qui permet, notamment, grâce à des outils simples qui sont dérivés de la théorie des écoulements potentiels, d'évaluer la portance des ailes d'avions. D'autre part la présentation par deux représentants du secteur des transports (automobiles et hélicoptères) des méthodes les plus récentes utilisées dans l'industrie permet de bien identifier les points durs qui empêchent, notamment, d'améliorer encore plus leurs performances. L'écart énorme de complexité entre ces deux types d'approches justifie que seuls les outils simplifiés puissent être exposés dans le cadre du cours. Ces outils sont néanmoins toujours utilisés en aéronautique dans le cadre d'études de faisabilité et de prédimensionnement. Ce cours est complété par une introduction aux écoulements compressibles et aux méthodes de résolution qui permettent de décrire les discontinuités (ou chocs) dans un écoulement compressible.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir modéliser et analyser un problème d'aérodynamique ou des écoulements à phases multiples, en choisissant le niveau de modélisation le plus pertinent
- Maîtriser les méthodes de modélisation/simulation numérique associées à ces types de situations
- * Savoir interpréter des résultats d'expérience

Modalité de contrôle des connaissances

Projet: restitution d'un rapport, 50%

TP: rédaction de comptes-rendus, 50%

Bibliographie

- 1. Borghi, R. & Anselmet, F. (2014). Modélisation des écoulements multiphasiques turbulents hors d'équilibre. HERMES SCIENCE.
- 2. Mailliat, A. (2012). Les Milieux aérosols et leurs représentations. EDP Sciences.
- 3. Paraschivoiu, I. (1998). Aérodynamique subsonique. Éditions de l'École polytechnique de Montréal.

Equipe pédagogique

Fabien Anselmet (ECM)

Malek Abid (AMU)

Pierre Boivin (CNRS-M2P2)

Objectif de Développement Durable

Recours aux énergies renouvelables

Lutte contre le changement climatique

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	12h
Nouvelles heures d'enseignement	Travaux Pratiques	12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Anselmet

■ fabien.anselmet@centrale-marseille.fr

Électif à choisir dans le Menu 1

Temps 2

	Nature	CM	TD	TP	Crédits
Transferts turbulents	Module	16h	8h		2
	Nature	СМ	TD	TP	Crédits
Ecoulements diphasiques	Module	16h	8h		2
	Nature	СМ	TD	TP	Crédits
Ecoulements géophysiques	Module	16h		8h	2
	Nature	СМ	TD	TP	Crédits
Électif à choisir dans le Menu 2	Module				2

Transferts turbulents

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Le cours sur la turbulence du temps 1

Objectifs d'apprentissage

Ce cours présente l'importance de la turbulence dans les phénomènes de transfert de chaleur et de masse. Il approfondit les connaissances par rapport au cours de Turbulence en insistant sur les situations complexes rencontrées dans les applications industrielles, mais aussi sur des analyses théoriques qui permettent de compléter et approfondir les concepts présentés dans le premier module (notions d'invariants du tenseur de Reynolds et de « réalisabilité » des modèles, notamment, mais aussi l'apport des méthodes de Machine Learning à l'étude et la modélisation des écoulements turbulents).

Description du programme

Ce module approfondit les connaissances acquises dans le cours sur la turbulence en abordant les modèles de turbulence au second ordre et en insistant sur les phénomènes complexes liés aux couplages (couplage pression-vitesse en particulier) que ces modèles permettent de prendre en compte mais aussi en s'intéressant aux écoulements avec transferts de chaleur et/ou de masse qui n'étaient pas abordés dans le cours de turbulence. Le tout est illustré par l'analyse de nombreux cas concrets d'écoulements rencontrés tant dans l'industrie que dans les applications environnementales.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir modéliser et analyser des écoulements turbulents, en choisissant le modèle plus pertinent
- Maîtriser les méthodes de modélisation/simulation numérique des écoulements turbulents
- * Savoir calculer les caractéristiques principales (intensités turbulentes, échelles caractéristiques) des écoulements turbulents
- * Savoir interpréter des résultats d'expérience

Modalité de contrôle des connaissances

CC: contrôle continu, 50%

Projet: restitution d'un rapport, 50%

Bibliographie

- 1. Abid, M., Anselmet F., Kharif, C. (2017). Instabilités hydrodynamiques et Turbulence. CEPADUES.
- 2. Charru, F. (2007). Instabilités hydrodynamiques (SAVOIRS ACTUELS) (French Edition). EDP SCIENCES.
- 3. Chassaing, P. (2000). Turbulence en mécanique des fluides: analyse du phénomène en vue de sa modélisation à l'usage de l'ingénieur. Cépaduès éditions.

Equipe pédagogique

Fabien Anselmet (ECM)

Malek Abid (AMU)

Objectif de Développement Durable

Villes et communautés durables

Lutte contre le changement climatique

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Fabien Anselmet

■ fabien.anselmet@centrale-marseille.fr

Ecoulements diphasiques

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Le cours de turbulence du temps 1

Objectifs d'apprentissage

Ce cours reprend les principes fondamentaux de la description des écoulements multiphasiques. Les compétences et les connaissances visées correspondent au niveau minimal requis, soit pour interagir avec des spécialistes de ces domaines ou pour traiter par soi-même des problèmes classiques courants, soit pour approfondir ces connaissances par la lecture d'ouvrages spécialisés ou par la participation à des formations complémentaires spécialisées.

Description du programme

Le cours sur les écoulements multiphasiques présente les développements théoriques spécifiques à ces écoulements, en partant tout d'abord des équations les plus générales, puis en s'intéressant de façon spécifique à deux situations particulières, les écoulements d'équilibre liquide/vapeur que l'on rencontre, notamment, dans l'industrie nucléaire, ainsi que les problèmes liés aux aérosols que l'on peut rencontrer tant dans l'industrie que dans l'environnement (pollution atmosphérique et risques sanitaires associes).

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir modéliser et analyser un problème d'aérodynamique ou des écoulements multiphasiques, en choisissant le niveau de modélisation le plus pertinent
- Maîtriser les méthodes de modélisation/simulation numérique associées à ces types de situations
- * Savoir interpréter des résultats d'expérience

Modalité de contrôle des connaissances

Projet: restitution d'un rapport, 50%

DS: devoir surveillé, 50%

Bibliographie

- 1. Borghi, R., & Anselmet, F. (2014). Modélisation des écoulements multiphasiques turbulents hors d'équilibre. HERMES SCIENCE.
- 2. Mailliat, A. (2010). Les milieux aérosols et leurs représentations. EDP SCIENCES.
- 3. Paraschivoiu, I. (1999). Aerodynamique subsonique (French Edition) (ECOLE POLYTECHNIQUE DE MONTREAL). PIP.

Equipe pédagogique

Fabien Anselmet (ECM)

Malek Abid (AMU)

Intervenants extérieurs du milieu industriel (CEA/IRSN)

Objectif de Développement Durable

Villes et communautés durables

Lutte contre le changement climatique

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Daniel Mazzoni

■ daniel.mazzoni@centrale-marseille.fr

Ecoulements géophysiques

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Acquérir des connaissances et compétences dans le domaine de la mécanique des fluides appliquée à l'environnement et aux écoulements atmosphériques et océaniques.
- * Comprendre les mécanismes et processus physiques gouvernant ces phénomènes, afin d'être en mesure d'utiliser des outils de modélisation (numériques et expérimentaux).
- * Acquérir un bagage scientifique suffisant pour intégrer une équipe de projet portant sur les écoulements géophysiques au sens large, incluant par exemple les thématiques de développement durable, de réchauffement climatique, de circulation océanique, ou encore des énergies renouvelables.
- * Développer un sens critique sur les outils d'étude au sens large mis en œuvre pour étudier, modéliser ou prévoir ces écoulements.
- * Savoir tirer le meilleur parti de ces outils et méthodologies d'étude, en les utilisant au mieux de leurs capacités et en gardant un sens critique sur les résultats obtenus

Description du programme

- * Physique des écoulements à grande échelle dans l'atmosphère et l'océan
- * Effets de la rotation de la Terre et de la stratification en densité
- * Notions de dynamique atmosphérique et de climatologie
- * Modèles réduits, lois d'échelle et paramétrisations

* Instabilités et turbulence dans les écoulements géophysiques

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Transmettre une expertise sur la physique et la modélisation des écoulements atmosphériques et océaniques
- * Donner des clés pour comprendre les mécanismes physiques qui régissent ces écoulements et leurs interactions avec le relief naturel et les ouvrages (structures de génie civil de types portuaire ou côtier, enjeux environnementaux, etc.
- * Transmettre des notions permettant de faire les meilleurs choix en termes d'outils à utiliser pour des projets ou études, d'émettre des spécifications, d'interpréter des résultats de façon pertinente
- * Avoir un niveau de maîtrise suffisant pour proposer, susciter ou discuter d'innovations en lien avec ces domaines

Modalité de contrôle des connaissances

CC: comptes-rendus de TP, Projet numérique CFD: 100%

Bibliographie

- 1. McWilliams, J. C. (2006). Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press.
- 2. Cushman-Roisin, B., & Beckers, J. (2011). Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects (Volume 101) (International Geophysics, Volume 101) (2nd ed.). Academic Press.
- 3. Vallis, G. K. (2012). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.

Equipe pédagogique

Michael Le Bars (CNRS)

Benjamin Favier (CNRS)

Objectif de Développement Durable

Villes et communautés durables

Lutte contre le changement climatique

Total des heures 24h

Nouvelles heures d'enseignement Cours Magistral 16h

8h

Nouvelles heures d'enseignement Travaux Pratiques

Infos pratiques

Nom responsable UE

Responsable pédagogique

Daniel Mazzoni

■ daniel.mazzoni@centrale-marseille.fr

Électif à choisir dans le Menu 2

Parcours Génie Mer (GM)

	Nature	CM	TD	TP	Crédits
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Hydrodynamique marine Première partie	Module				2
Ingénierie Côtière	Module				2
Abaqus	Module				2
	Nature	СМ	TD	TP	Crédits
Temps 2	Module				
Hydrodynamique marine Deuxième partie	Module				2
Sedimentologie et Mécanique des sols	Module				2
Génie Côtier	Module				2
Opérations Marines	Module				1
Corrosion	Module				- 1

Temps 1

	Nature	CM	TD	TP	Crédits
Ondes en mécanique	Module	8h	8h	8h	2
	Nature	СМ	TD	TP	Crédits
Hydrodynamique marine Première partie	Module				2
	Nature	СМ	TD	TP	Crédits
Ingénierie Côtière	Module				2
	Nature	СМ	TD	TP	Crédits
Abaqus	Module				2

Hydrodynamique marine Première partie

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

Ingénierie Côtière

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

Abaqus

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

Temps 2

	Nature	CM	TD	TP	Crédits
Hydrodynamique marine Deuxième partie	Module				2
	Nature	СМ	TD	TP	Crédits
Sedimentologie et Mécanique des sols	Module				2
	Nature	СМ	TD	TP	Crédits
Génie Côtier	Module				2
	Nature	СМ	TD	TP	Crédits
Opérations Marines	Module				1
	Nature	СМ	TD	TP	Crédits
Corrosion	Module				1

Hydrodynamique marine Deuxième partie

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

Sedimentologie et Mécanique des sols

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

Génie Côtier

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

☑ lili.kimmoun@centrale-marseille.fr

Opérations Marines

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

☑ lili.kimmoun@centrale-marseille.fr

Corrosion

Parcours Modélisation Mécanique des Matériaux et des Structures (M3S)

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Temps 1	Module				
Ondes en mécanique	Module	8h	8h	8h	2
Structures minces et instabilités	Module	16h	8h		2
Comportement des matériaux - Plasticité	Module	14h	8h	2h	2
Outils logiciels en mécanique - Bases	Module	8h	2h	14h	2
	Nature	СМ	TD	TP	Crédits
Temps 2	Choix				
4 électife à chaisir dans les Manus 2 et 2	Modulo				

4 électifs à choisir dans les Menus 2 et 3

Module

Temps 1

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Ondes en mécanique	Module	8h	8h	8h	2
	Nature	СМ	TD	TP	Crédits
Structures minces et instabilités	Module	16h	8h		2
	Nature	СМ	TD	TP	Crédits
Comportement des matériaux - Plasticité	Module	14h	8h	2h	2
	Nature	СМ	TD	TP	Crédits
Outils logiciels en mécanique - Bases	Module	8h	2h	14h	2

Structures minces et instabilités

Fn bref

> Langue de cours: Français

Présentation

Prérequis

MMC, élasticité linéaire (UE 1A/Mécanique)

Objectifs d'apprentissage

Acquérir les connaissances nécessaires à la compréhension des modèles de structures (hypothèses et cadre d'application), ainsi que les méthodes de dimensionnement associées :

- · Savoir modéliser et analyser les structures à base de poutres et de plaques
- · Maîtriser les méthodes de dimensionnement en élasticité linéaire et en flambement

Description du programme

- · Rappels d'élastodynamique tridimensionnelle (cinématique, sthénique, loi de Hooke, équations locales, formulations intégrales)
- · Modèles de poutres :
- -- Hypothèses d'Euler-Navier-Bernoulli et de Timoshenko
- -- Etablissement des modèles

- -- Théorèmes énergétiques (Ménabréa et Castigliano)
- -- Dimensionnement en élasticité
- · Modèles de plaques (Kirchoff-Love et Reissner-Mindlin)
- · Instabilités des structures minces en compression sous rotations modérées (flambement d'Euler, modèle de von-Karmann).

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Savoir modéliser et analyser des structures complexes
- · Maîtriser les méthodes de dimensionnement en élasticité
- · Savoir anticiper des phénomènes complexes d'instabilité
- · Proposer des approches réduites pour minimiser les coûts de calcul

Modalité de contrôle des connaissances

DS: évaluation écrite de 2h (100%)

Bibliographie

- · Polycopié de cours en PDF
- P. Ballard et A. Millard, Poutres et arcs élastiques, Edition Ecole Polytechnique, 2009.
- C.R. Calladine, Theory of shell structures, Cambridge University Press, 1983.

Equipe pédagogique

Stéphane Bourgeois

Total des heures		24h
CM	Cours Magistral	16h
TD	Travaux Dirigés	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Stéphane Bourgeois

■ stephane.bourgeois@centrale-marseille.fr

Comportement des matériaux - Plasticité

Fn bref

> Langue de cours: Français

Présentation

Prérequis

MMC, algèbre et analyse tensorielles (UE 1A/Mécanique)

Objectifs d'apprentissage

Dépasser le cadre de l'élasticité linéaire sous hypothèse des petites perturbations :

- Découvrir les principaux types de comportements non linéaires des matériaux
- · Connaître le cadre thermodynamique dans lequel les modèles généraux doivent s'inscrire
- · Maîtriser plusieurs modèles de comportement

Description du programme

- Mise en évidence sur essais de traction simple
- Thermodynamique des processus irréversibles comme cadre d'écriture des modèles de comportement
- · Trois exemples de modèles d'élasto(visco)-plasticité

• Un exemple de modèle d'élasticité-endommagement

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Savoir identifier le modèle de comportement approprié au problème traité
- · Modéliser des problèmes complexes aux modèles de comportement évolués
- Proposer des modèles de comportements adaptés à des matériaux nouveaux

Modalité de contrôle des connaissances

DS: évaluation écrite de 2h (100 %)

Bibliographie

- J. Lemaître et J.-L. Chaboche, Mécanique des matériaux solides, 2004
- D. François, A. Pineau et A. Zaoui, Élasticité et plasticité, 2009

Equipe pédagogique

Thierry Désoyer

Total des heures		24h
CM	Cours Magistral	14h
TD	Travaux Dirigés	8h
TP	Travaux Pratiques	2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Desoyer

■ thierry.desoyer@centrale-marseille.fr

Outils logiciels en mécanique - Bases

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- Mécanique des Milieux Continus (cf. UE 1A/Mécanique)
- Formulations faibles ou Théorème des Puissances Virtuelles (cf. UE 🗹 2A/Approfondissement MECAPHY)

Objectifs d'apprentissage

L'objectif de cette UE est de maîtriser la méthode des éléments-finis pour résoudre des problèmes simples (matériaux au comportement élastique linéaire, statique) :

- · Acquérir une vision large des outils logiciels utilisant la méthode des éléments finis en mécanique des solides
- · Connaître les fondements théoriques de la méthode
- · Connaître et savoir utiliser la méthode des éléments finis dans un cadre logiciel
- -- Savoir définir un problème dans un cadre logiciel
- -- Savoir construire les étapes de la résolution d'un problème dans un cadre logiciel
- · Savoir analyser et critiquer un résultat de calcul
- · Connaître les possibilités et limites de la simulation numérique et de ses modèles

Les éléments de modélisation et calcul avancés seront abordés dans le cours 🗹 Outils logiciels en mécanique - Avancé.

Description du programme

- · Rappels théoriques sur la MEF
- Présentation et prise en main du logiciel Abaqus
- Traitement de différents problèmes simples (3D volumique, élasticité linéaire) sous forme de TP et d'un Mini-Projet (1 séance avec enseignant et 1 séance en autonomie)
- Utilisation d'éléments structuraux (poutres, plaques et coques), en lien avec le cours 🗹 SMIN

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Savoir formuler des problèmes simples dans un cadre logiciel
- · Savoir analyser et critiquer les résultats d'un calcul
- · Savoir choisir le logiciel le plus adapté aux problèmes traités

Modalité de contrôle des connaissances

- CC1 : QCM sur la partie théorique (10 %)
- CC2 : CR de mini-projet (65 %)
- CC3: CR de TP en lien avec le cours SMIN (25 %)

Bibliographie

- · Notes de cours (Introduction et rappels théoriques EF)
- · Support de cours
- M. Bonnet et A. Frangi, Analyse des solides déformables par la méthode des éléments finis, Les éditions de l'École Polytechnique, 2006

• T.J. Hughes, The finite element method: linear static and dynamic finite element analysis, Dover, 2012

Equipe pédagogique

- · Stéphane Bourgeois
- Iulian Rosu (ingénieur de recherche CNRS, Laboratoire de mécanique et d'acoustique)
- Emmanuelle Sarrouy

Total des heures		26h
CM	Cours Magistral	8h
TD	Travaux Dirigés	2h
TP	Travaux Pratiques	14h
AA (projet)	Apprentissage en Autonomie	2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

■ emmanuelle.sarrouy@centrale-marseille.fr

Temps 2

Liste des enseignements

Nature CM TD TP Crédits

4 électifs à choisir dans les Menus 2 et 3

Module

4 électifs à choisir dans les Menus 2 et 3

Electifs

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Menu 1	Module				
Aéroacoustique	Module	16h	8h		2
Biomécanique et micro hydrodynamique	Module	16h	4h	4h	2
	Nature	СМ	TD	TP	Crédits
Menu 2	Choix				
Interactions fluide structure	Module	12h		12h	2
Milieux diphasiques et interactions fluide-solide	Module	12h	4h	8h	2
Génie civil	Module	12h	12h		2
	Nature	СМ	TD	TP	Crédits
Menu 3	Choix				
Composites et stratifiés	Module	16h	4h	4h	2
Dynamique rapide et crash	Module	8h	8h	8h	2
Tenue des matériaux et des structures	Module	18h	6h		2
Optimisation des structures	Module	16h		8h	2

Menu 1

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Aéroacoustique	Module	16h	8h		2
	Nature	СМ	TD	TP	Crédits
Biomécanique et micro hydrodynamique	Module	16h	4h	4h	2

Aéroacoustique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Ce cours présente les concepts et les phénomènes spécifiques à la génération du son et à sa propagation dans des milieux fluides au repos ou en mouvement, ainsi que les bases de l'aéroacoustique. Le cours a pour objectif de permettre à un élève, lorsqu'il sera ingénieur, de maîtriser les notions mathématiques et physiques de base nécessaires à la résolution de problèmes d'acoustique, d'aéroacoustique et de vibration, en particulier en utilisant des outils numériques du commerce : savoir évaluer des ordres de grandeur raisonnables, savoir maîtriser les différents niveaux d'approximation impliqués par ces outils de modélisation numérique, savoir interpréter et analyser de façon critique les résultats obtenus, etc.

Il n'y a pas de préreguis particuliers. Les cours de mécanique et de mécanique des milieux continus de 1ère année suffisent.

Description du programme

Le cours est organisé en deux parties.

- * Dans la 1ère partie, on rappelle tout d'abord les bases de l'acoustique (notions sur les ondes et la propagation, les différents types de sources...), puis on examine différentes applications (propagation dans une atmosphère stratifiée ou en milieu confiné...).
- * Dans la 2ème partie, on s'intéresse spécifiquement à l'aéroacoustique, sa caractérisation expérimentale et sa modélisation en vue de la mise en œuvre de simulations numériques. Pour cela, on présente les modèles classiques, et de complexité croissante, que

sont par exemple les approches de Lighthill, de Ribner ou de Corcos. Finalement, quelques exemples de simulations numériques récentes permettent d'illustrer les limites de ces modèles.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir modéliser et analyser des phénomènes acoustiques ou aéroacoustiques
- * Maîtriser les méthodes de modélisation et de simulation numérique en acoustiques ou aéroacoustiques
- * Savoir calculer les caractéristiques principales (niveaux, pics fréquentiels) des phénomènes acoustiques ou aéroacoustiques
- * Savoir interpréter des résultats d'expérience

Modalité de contrôle des connaissances

DS: devoir surveillé, 100%

Bibliographie

- 1. Anselmet, F., Mattei, P-O., (2015). Acoustique, Aeroacoustique Et Vibrations. Iste Editions.
- 2. Lewy, S. (2001). Acoustique industrielle et aéroacoustique (HERMES SCIENCE PUBLICATIONS). HERMES SCIENCE.

Equipe pédagogique

Fabien Anselmet (ECM)

Yannick Knapp (Université d'Avignon et Pays du Vaucluse)

Objectif de Développement Durable

Villes et communautés durables

Consommation et production responsables

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Daniel Mazzoni

■ daniel.mazzoni@centrale-marseille.fr

Biomécanique et micro hydrodynamique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Appréhender la complexité des caractéristiques et du fonctionnement de milieux vivants.
- * Prédire et analyser les phénomènes mécaniques du monde du vivant pour apporter un nouvel éclairage issu de la mécanique sur des problématiques de santé.
- * Savoir identifier les mécanismes clés et choisir les bons modèles en fonction du problème considéré pour les milieux vivants.
- * Acquérir et maîtriser certains outils de modélisation et de caractérisation des milieux vivants.

Description du programme

Les objectifs du programme seront conceptualisés lors d'une intervention introductive qui présentera les motivations pédagogiques. Quelques exemples de l'articulation : système biologique / fonctionnement / pathologie / modélisation / diagnostic & thérapie / permettront de relier le contexte médical et le contexte mécanique. Le contexte médical sera abordé par un clinicien rompu aux activités de recherche clinique. Les cours portant sur la caractérisation, la modélisation des tissus et fluides biologiques et les interactions fluide-structure seront dispensés par des enseignants-chercheurs spécialistes du domaine. Ils seront déclinés en explicitant leur apport relativement aux exemples d'articulation. Dans le cadre d'un projet, différents articles scientifiques en lien direct avec les cours seront proposés aux étudiants afin de leur permettre d'appréhender la recherche scientifique. Enfin, un travail pratique qui sera une application concrète des cours sera proposé

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir appréhender et simplifier un problème complexe ayant à la biomécanique.
- Savoir proposer des solutions adaptées.
- * Savoir structurer son travail dans le temps.
- * Savoir rendre compte de ses travaux aussi bien à l'oral qu'à l'écrit.

Modalité de contrôle des connaissances

CC: QCM en début de cours, rédaction de comptes-rendus de TP, analyse bibliographique, devoir surveillé, 100%

Bibliographie

- 1. Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissues, Second Edition (2nd ed.). Springer.
- 2. Humphrey, J. D. (2002). Cardiovascular Solid Mechanics: Cells, Tissues, and Organs (2002nd ed.). Springer.

Equipe pédagogique

Cécile Baron (CNRS-IRPHE)

Olivier Boiron (ECM)

Carine Guivier-Curien (AMU)

Valérie Deplano (CNRS-IRPHE)

1 clinicien(ne)

Objectif de Développement Durable

Accès à la santé

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	4h
Nouvelles heures d'enseignement	Travaux Pratiques	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Daniel Mazzoni

■ daniel.mazzoni@centrale-marseille.fr

Menu 2

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Interactions fluide structure	Module	12h		12h	2
	Nature	СМ	TD	TP	Crédits
Milieux diphasiques et interactions fluide-solide	Module	12h	4h	8h	2
	Nature	СМ	TD	TP	Crédits
Génie civil	Module	12h	12h		2

Interactions fluide structure

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Acquérir les connaissances nécessaires pour identifier les situations pouvant potentiellement engendrer des couplages fluidestructure et être en situation de proposer des solutions palliatives quand cela est possible
- * Connaître les principaux modes de couplages
- * Savoir modéliser, analyser et dimensionner un problème on intervient un couplage fluide-structure simple
- * Savoir interpréter des expériences mettant en œuvre des couplages fluide-structure

Description du programme

- * Exemples de couplages fluide-structure dans les domaines du génie civil, de l'aéronautique, du spatial et de l'énergie
- * Rappels de mécanique des fluides et d'élastodynamique
- * Analyse dimensionnelle des couplages fluide-structure
- * Classification des problèmes d'Interactions fluide-structure
 - * Structure immergée dans un fluide au repos masse ajoutée
 - * Aéroélasticité (coefficients aéroélastiques et applications en aéronautique et en génie civil)
 - * Ballottement de fluides dans des réservoirs (Tuned Liquid Damper, effet POGO)
 - * Conduites déformables (applications en biomécanique et en hydraulique)
- * Introduction à l'étude numérique des couplages fluide-structure

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir modéliser et analyser des couplages fluide-structure (C2)
- Maîtriser les méthodes de dimensionnement associées (C2)
- * Savoir calculer les efforts aérodynamiques sur des structures (C2)
- * Savoir interpréter des résultats d'expérience (C2)

Modalité de contrôle des connaissances

TP: restitution de comptes-rendus, 50%

Projet: restitution d'un rapport, 50%

Bibliographie

E.H. Dowell, A modern course in aeroelasticity, Kluwer acad. publisher, 2004

- 1. Carmona, et J.-C. Foucriat, Comportement au vent des ponts, Presses des ponts et chaussées, 2002.
- 2. de Langre, Fluides et solides, Éditions de l'école polytechnique, 2001.
- 3. Païdoussis, Fluid-structure interactions, T1&2, Elsevier, 2004.

Equipe pédagogique

Olivier Boiron (ECM)

Kevin LE PRIN, Project and R&D engineer, SEAL Engineering

Sylvain TRUCHE, Project and R&D engineer, SEAL Engineering

Objectif de Développement Durable

Bâtir une infrastructure résiliente

Villes et communautés durables

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	12h
Nouvelles heures d'enseignement	Travaux Pratiques	12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Olivier Boiron

■ olivier.boiron@centrale-marseille.fr

Milieux diphasiques et interactions fluide-solide

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Mécanique des Milieux Continus, Mécanique des Solides et/ou Mécanique des Fluides (cf. UE Z 1A/Mécanique)

Objectifs d'apprentissage

- Comprendre et modéliser les interactions solide/fluide en milieux naturel ou urbain : milieux poreux (y/c bétons, sols, roches et milieux granulaires), écoulements à surface libre avec érosion
- Acquérir les éléments de base permettant d'aborder le risque hydraulique, le risque inondation, et les analyses de risque associées aux barrages réservoirs et digues fluviale de protection
- Notions relatives aux barrages et digues concernant les impacts environnementaux, les énergies renouvelables et les impacts du changement climatique

Description du programme

- Mécanique des milieux poreux (y/c bétons, sols, roches et milieux granulaires) : équations de conservation diphasiques, lois de comportement (critères de rupture de type Mohr-Coulomb, modèles de comportement de type Cam-Clay, critère d'instabilité de Hill) et d'interaction solide/fluide (loi de Darcy, transport de Chaleur, contraintes effectives de Terzaghi, érosion interne).
- Ecoulements diphasiques, érosion et transport sédimentaire : équations de conservation diphasiques et équations de saut, éléments de mécanique des fluides (turbulence, rugosité), interactions écoulement externe/milieu poreux (échanges de masse,

échanges de quantité de mouvement, loi de Brinkman, érosion externe), écoulements à surface libre, équations de Navier-Stokes avec érosion, équations de Saint-Venant (shallow water eqs.) avec érosion

- Exemples d'application : barrages réservoirs et digues fluviales de protection contre les inondations (utilité, conception, sûreté, analyse du risque hydraulique, étude de quelques ruptures historiques), impact des barrages réservoirs sur l'environnement, barrages réservoirs et énergie renouvelable, risque inondation et changement climatique
- TPs:
- -- TP1: Calcul poromécanique avec Abaqus;
- -- TP2 : Simulation de la rupture par érosion d'une digue fluviale de protection et propagation de l'onde d'inondation avec CastorDigue

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Comprendre et savoir modéliser les milieux poreux, les écoulements à surface libre avec érosion
- · Savoir proposer un modèle opérationnel adapté au problème
- · Analyser et critiquer les résultats de calcul
- Élaborer des modèles complexes de milieux multiphasiques pour un problème nouveau

Modalité de contrôle des connaissances

CC: CR de TPs (100%)

Bibliographie

Polycopié de cours

Equipe pédagogique

Stéphane Bonelli (directeur de recherche, Inrae, Aix-en-Provence)

Total des heures 24h

CM	Cours Magistral	12h
TD	Travaux Dirigés	4h
TP	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

■ emmanuelle.sarrouy@centrale-marseille.fr

Génie civil

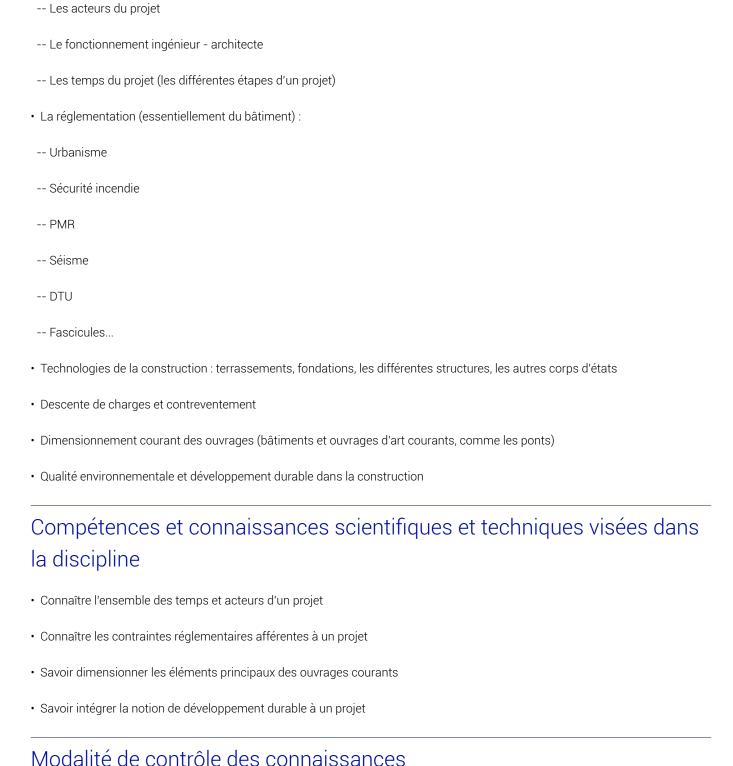
Fn bref

> Langue de cours: Français

Présentation

Prérequis

Mécanique des milieux continus (cf. UE 1A/Mécanique)


Objectifs d'apprentissage

- Donner un aperçu général des différents types de projets et métiers dans le domaine du génie civil
- · Connaître les grandes phases d'un projet de construction
- Acquérir une vision générale :
- -- des réglementations ;
- -- des technologies de constructions et notamment du béton armé ;
- -- des principes de dimensionnement.
- · Sensibiliser aux problématiques du développement durable dans le cadre de la conception et de la réalisation d'un ouvrage

Description du programme

· Introduction générale :

CC: CR de mini-projet (100%)

Bibliographie

- · Polycopié de cours
- · Support de cours

Equipe pédagogique

Didier Bruneel (ingénieur, département des Bouches-du-Rhône, Marseille)

Objectif de Développement Durable

Villes et communautés durables

Consommation et production responsables

Lutte contre le changement climatique

Total des heuresCMCours Magistral12hTDTravaux Dirigés12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

≥ emmanuelle.sarrouy@centrale-marseille.fr

Menu 3

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Composites et stratifiés	Module	16h	4h	4h	2
	Nature	СМ	TD	TP	Crédits
Dynamique rapide et crash	Module	8h	8h	8h	2
	Nature	СМ	TD	TP	Crédits
Tenue des matériaux et des structures	Module	18h	6h		2
	Nature	СМ	TD	TP	Crédits
Optimisation des structures	Module	16h		8h	2

Composites et stratifiés

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- MMC, élasticité linéaire (cf. UE 🗹 1A/Mécanique)
- Modèles de poutres et plaques (cf. UE 2 3A/Structures minces et instabilités)

Objectifs d'apprentissage

- Découvrir les différents types de matériaux composites et leur mise en œuvre
- Acquérir les méthodes de calcul des structures en matériaux composites
- · Maîtriser la notion d'anisotropie en élasticité linéaire
- Savoir remplacer un milieu hétérogène par un milieu homogène équivalent (approches micro-macro) dans une démarche de modélisation
- · Maîtriser les concepts de modélisation des stratifiés (modèles de plaques)
- · Savoir analyser les critères de rupture propres aux matériaux hétérogènes

Description du programme

- Généralités sur les matériaux composites :
- -- constituants : inclusions, fibres, résines, tissus
- -- mise en œuvre : moulages, pultrusion, centrifugation, enroulement filamentaire
- -- produits finis : stratifiés, plaques et poutres sandwiches
- · Comportement élastique des milieux hétérogènes :
- -- notion de volume élémentaire représentatif (VER) et comportement homogène équivalent
- -- caractérisation du VER (milieux aléatoires, périodiques) et élasticité anisotrope
- -- méthodes d'homogénéisation (Voigt, Reuss, modules effectifs, homogénéisation périodique, estimations et bornes de Hashin et Shtrickman) et mise en œuvre dans un code EF (Abaqus)
- · Modes et critères de rupture des stratifiés (contraintes et déformations maximales, Tsaï-Hill, Hoffman, Tsaï-Wu)
- · Modèles de plaques stratifiées et sandwichs
- · Applications au dimensionnement des structures composites

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Connaître une gamme de matériaux et leurs potentiels pour différentes applications
- · Utiliser des modèles de matériaux hétérogènes
- Définir des modèles simplifiés de matériaux hétérogènes pour des calculs efficaces
- Être à même de proposer des modélisations de matériaux innovants

Modalité de contrôle des connaissances

- DS: évaluation écrite de 2 h (75 %)
- CC: CR de TP (25%)

Bibliographie

- Transparents de cours PDF
- M. Bornert, T. Bretheau et P. Gilormini, Homogénéisation en mécanique des matériaux, tomes 1 et 2, Hermes, 2001
- J.-M. Berthelot, Matériaux composites : comportement mécanique et analyse des structures, Tec&Doc, 1999
- D. Gay, Matériaux composites, Hermes, 1991

Equipe pédagogique

Stéphane Bourgeois

Total des heures		24h
CM	Cours Magistral	16h
TD	Travaux Dirigés	4h
TP	Travaux Pratigues	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Stéphane Bourgeois

■ stephane.bourgeois@centrale-marseille.fr

Dynamique rapide et crash

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- Mécanique des milieux continus (cf. UE 1A/Mécanique)
- Méthode des éléments finis (cf. UE 2 3A/Outils logiciels en mécanique Bases)

Objectifs d'apprentissage

- Découvrir les problématiques spécifiques liées à la modélisation des matériaux et des structures en dynamique rapide et crash :
- -- schémas d'intégration explicites en temps
- -- non-linéarités géométriques (grandes rotations, grands déplacements)
- -- comportements non linéaires des matériaux
- -- contact-frottement
- -- éléments finis spécifiques
- Utiliser et savoir paramétrer un code de calcul explicite (Radioss)

Description du programme

- Introduction à l'analyse des systèmes mécaniques en dynamique
- · Présentation de la suite logicielle HyperWorks
- · Éléments théoriques :
- -- Discrétisation en temps (implicite/explicite, condition de stabilité des schémas)
- -- Discrétisation en espace (éléments finis et "hourglass control")
- Choix de modélisation :
- -- Relations de comportement de différents matériaux
- -- Modélisation du contact
- -- Ajout de contraintes cinématiques et de chargements
- · Mise en pratique par l'utilisation d'un code de calcul de dynamique rapide (HyperWorks/Radioss)
- -- Mise en données du problème
- -- Choix et paramétrage des algorithmes
- -- Analyse critique des résultats de calcul

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Connaître les spécificités théoriques de la dynamique rapide
- · Savoir choisir de construire un modèle adapté au problème traité
- · Savoir choisir l'algorithmie adaptée au problème traité
- · Savoir analyser et critiquer un résultat de calcul

Modalité de contrôle des connaissances

CC: CR de mini-projet (100%)

Bibliographie

Support de cours

Equipe pédagogique

- Mathis Loverini (ingénieur, Altair, Lyon)
- Bilal Bendjeffal (ingénieur, Altair, Paris)

Total des heures		24h
CM	Cours Magistral	8h
TD	Travaux Dirigés	8h
TP	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

manuelle.sarrouy@centrale-marseille.fr

Tenue des matériaux et des structures

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- MMC, algèbre et analyse tensorielles (cf. UE 1 A/Mécanique)
- Comportement élastoplastique (cf. UE Z 3A/Comportement des matériaux Plasticité)
- Modèle de poutre (cf. UE 2 3A/Structures minces et instabilités)

Objectifs d'apprentissage

- Découvrir les approches classiques de la mécanique linéaire de la rupture
- · Découvrir les principales caractéristiques du phénomène de fatigue des matériaux et des structures sur des exemples simples
- · Connaître les approches classiques en fatigue dite "uniaxiale" et découvrir les approches actuelles en fatigue (multiaxiale)
- Acquérir les concepts et les méthodes de calcul permettant de dimensionner les structures vis-à-vis du calcul à la rupture et de l'analyse limite

Description du programme

· Partie 1 : Phénomènes et modèles

- -- Mécanique linéaire de la rupture : domaine de validité et problème type
- -- Approche globale de la rupture : taux de restitution d'énergie et critère de Griffith
- -- Approche locale de la rupture : facteurs d'intensité de contraintes et critère du K1c
- -- Comparaison entre les deux approches classiques en mécanique linéaire de la rupture
- -- Influence du trajet de chargement (monotone ou cyclique) sur le comportement à la rupture des structures solides : phénoménologie et classification
- -- Fatigue "uniaxiale" à grand nombre de cycles : courbe de Wöhler et diagramme de Haigh ; loi de Paris
- -- Fatique "uniaxiale" à petit nombre de cycles (oligocyclique) : loi de Manson-Coffin
- -- Fatigue multiaxiale à grand nombre de cycles : critère macroscopique de Sines et macro-micro de Dang Van
- Partie 2 : Dimensionnement des structures
- -- Notions de charges limites et mécanismes de ruine plastique : exemples d'un treillis de barres et d'un arbre cylindrique en torsion
- -- Théorie du calcul à la rupture : notion de domaine de résistance local en contraintes et approche statique pour le calcul des chargements potentiellement supportables par une structure
- -- Approche duale cinématique
- -- Notion de coefficient de sécurité
- -- Application aux structures poutres, notion de rotule plastique en flexion

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Connaître les mécanismes de rupture
- Connaître les principaux critères de rupture
- · Savoir déterminer les mécanismes pouvant mener à la rupture d'un système donné
- Savoir dimensionner une structure vis-à-vis de la tenue à la rupture

Modalité de contrôle des connaissances

- DS1 : évaluation écrite de 1 h sur la 1ère partie (50 %)
- DS2 : évaluation écrite de 1 h sur la 2ème partie (50 %)

Bibliographie

- J. Garrigues, Cinématique des milieux continus (en ligne)
- J. Lemaître et J.-L. Chaboche, Mécanique des matériaux solides, éd. Dunod, 2004
- D. François, A. Pineau et A. Zaoui, Viscoplasticité, endommagement, mécanique de la rupture, mécanique du contact, éd. Lavoisier, 2009
- J. Salençon, Calcul à la rupture et analyse limite, Presses de l'ENPC, 1983

Equipe pédagogique

- · Thierry Désoyer
- Stéphane Bourgeois

Total des heures		24h
CM	Cours Magistral	18h
TD	Travaux Dirigés	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Stéphane Bourgeois

■ stephane.bourgeois@centrale-marseille.fr

Optimisation des structures

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Aucun

Objectifs d'apprentissage

- · Acquérir les bases théoriques nécessaires à la formulation d'un problème d'optimisation en mécanique des structures
- Connaître et savoir mettre en œuvre les grandes classes de problèmes de conception
- -- à travers des exemples simples et académiques ;
- -- à travers un certain nombre d'applications industrielles en s'initiant à un logiciel d'optimisation professionnel (OptiStruct).
- Découvrir les méthodes en cours de développement dans le domaine de l'optimisation

Description du programme

- Enjeux de l'optimisation de structures
- · Les grandes classes de problèmes

- Introduction aux notions théoriques de base de l'optimisation différentiable en dimension finie et aux principes algorithmiques d'optimisation numériques
- · Introduction au contrôle optimal
- · L'optimisation paramétrique
- · L'optimisation géométrique
- · L'optimisation topologique (SIMP, homogénéisation, pénalisation)
- Prise en main et paramétrage d'un code industriel (OptiStruct)
- · Autres méthodes (lignes de niveau, algorithmes génétiques...) et nouvelles tendances

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Savoir formuler un problème d'optimisation
- · Savoir choisir et mettre en œuvre l'algorithmie appropriée
- · Savoir utiliser et paramétrer un logiciel de calcul en vue d'une optimisation
- · Savoir analyser et critiquer les résultats de calcul

Modalité de contrôle des connaissances

- CC1: QCM (33%)
- CC2: CR TP FreeFE% (33%)
- CC3: CR TP en salle OptiStruct (34%)

Bibliographie

Supports de cours en PDF

Equipe pédagogique

Jean-Marie Rossi

Objectif de Développement Durable

Consommation et production responsables

Total des heuresCMCours Magistral16h8Travaux Pratiques8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Jean-Marie Rossi

≥ jean-marie.rossi@centrale-marseille.fr

Données et Décisions Economiques et Financières (DDEFI)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Temps 1 : Tronc commun	Module				
Modèles et décisions	Module	72h	6h	6h	8
	Nature	СМ	TD	TP	Crédits
Temps 2 : Un parcours au choix	Module				
Parcours Finance	Module	81h			8
Parcours Données et décision	Module	81h			8

Temps 1 : Tronc commun

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Modèles et décisions	Module	72h	6h	6h	8

Modèles et décisions

Fn bref

> Langue de cours: Anglais, Français

Présentation

Prérequis

- * Connaissances en probabilités et statistique (équivalent des contenus de MAT-1A et de l'Approfondissement MIE M1), pour les élèves souhaitant s'orienter vers les spécialisation Finance de marché et Analyse des données il est conseillé d'avoir suivi des cours plus avancés comme l'électif S7 Introduction aux processus stochastiques.
- * Connaissances en économie et comptabilité (équivalent du contenu d'ECO-1A)
- * Connaissances en finance (contenu équivalent à l'électif S7 Finance : introduction aux modélisations économiques et mathématiques)

Objectifs d'apprentissage

- * Comprendre comment évaluer les risques
- * Savoir modéliser une prise de décision dans un univers incertain
- * Connaître différentes approches pour comparer des situations risquées, leurs avantages et leurs inconvénients.
- * Connaître les différents biais pouvant impacter les prises de décision et savoir les mesurer
- * Savoir modéliser des séries temporelles et les appliquer pour la prédiction
- * Comprendre comment la structure du capital affecte la valeur d'une entreprise
- * Savoir conduire et présenter une analyse financière d'une entreprise
- * Comprendre le processus d'un projet de data science en entreprise

Description du programme

This course unit consists of three courses Risk and decision, Statistics and decisions, and Corporate finance, of 24 hours each, and is complemented by the first part of the data science project (12 hours course and 9 hours project) devoted to business issues.

Risk and decision

- 1. Risk and expected utility
 - i. Introduction: diversification and mutualization
 - ii. Risk measure
 - iii. Expected utility
- 2. Behavioral decision making
 - i. Decision under risk
 - ii. Decision under uncertainty
 - iii. Time preferences
- 3. Introduction to financial risk management

Statistics and decisions

- 1. Stochastic processes in discrete and continuous time
- 2. ARIMA process: definition, existence, characteristics (autocovariance, partial autocovariance)
- 3. Estimation of ARIMA processes: identification, parameters estimation and validation
- 4. Extensions: SARIMA, ARCH and GARCH processes

Corporate finance

- 1. The Corporation
- 2. Introduction to Financial Statements Analysis
- 3. Financial Decision Making and the Law of One Price
- 4. The Time Value of Money
- 5. Interest Rates
- 6. Investment Decision Rules
- 7. Capital Markets and The Pricing of Risk
- 8. Optimal Portfolio Choice and the Capital Asset Pricing Model
- 9. Capital Structure in a Perfect Market
- 10Financial Distress, Managerial Incentives, and Information
- 11Raising Equity Capital

Data science projects: business issues

- 1. Evolution and current stakes of Data Science in the economic world
- 2. Lifecycle of data science project
- 3. Business and legal constraints in data science projects
- 4. Data Science and Entrepreneurship

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Connaître les mesures de risque basées sur la fonction quantile, les relier au concept de dominance stochastique et comprendre leur intérêt en pratique.
- * Comprendre le concept d'espérance d'utilité, son lien avec l'aversion au risque et ses limites.
- * Distinguer processus stationnaire et non-stationnaire, savoir rendre stationnaire une série temporelle par différentes méthodes.
- * Identifier un processus de type SARIMA, être capable d'estimer ses paramètres et de conduire la validation du modèle estimé.
- Savoir lire et comprendre les états financiers d'une entreprise, et pouvoir les utiliser pour évaluer un projet ou un investissement.
- * Savoir prendre en compte les contraintes opérationnelles (récolte des besoins, cycle de vie d'un projet, communication) et techniques (données, mises à l'échelle,) d'un projet de data science.

Modalité de contrôle des connaissances

- * Examen écrit (Risk and decision): 35%
- * Tests et projets (Statistics and decisions): 35%
- * Projet en groupe (Corporate finance): 30%

Bibliographie

Risk and decision

- * Gollier, Schlesinger, and Eeckhoudt (2005). Economic and Financial Decisions Under Risk.
- * Jacquemet and L'Haridon O. (2018). 🗹 Experimental Economics: Method and Applications. Cambridge University Press.

Statistics and decisions

- * Brockwell and Davis (1991). Time Series: Theory and Methods
- * Box and Jenkins (1970). Time Series Analysis; Forecasting and Control. Corporate finance

Corporate finance

* Berk and DeMarzo (2019) Corporate finance.

Data science projects

- * Zeng, A and Casari, A. Feature Engineering for Machine Learning. O'Reilly Media.
- * Müller, A. and Guido, S. Introduction to Machine Learning with Python. O'Reilly Media.

Equipe pédagogique

- * Risk and decision : Dominique Henriet (Centrale Marseille), Mathieu Lefebvre (Aix-Marseille Université) et Clément Depoutre (BNP Paribas)
- * Corporate Finance : Gaël Leboeuf (AMU, Corporate Finance)
- * Statistics and decisions: Mitra Fouladirard (Centrale Marseille), Christophe Pouet (Centrale Marseille)
- * Data Science Projects: Alexandre Chirié (Mantiks)

Objectif de Développement Durable

Réduction des inégalités

Accès à une éducation de qualité

Total des heures		100h
Cours	Cours Magistral	72h
TD	Travaux Dirigés	6h
TP	Travaux Pratiques	6h
Projet	Projets	16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

renaud.bourles@centrale-marseille.fr

Temps 2: Un parcours au choix

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Parcours Finance	Module	81h			8
	Nature	СМ	TD	TP	Crédits
Parcours Données et décision	Module	81h			8

Parcours Finance

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

* UE Modèles et décisions de l'option DDEFi et ses propres prérequis

Objectifs d'apprentissage

- * Comprendre les similitudes entre concepts de finance de marché et de finance d'entreprise
- * Comprendre en quoi les produits financiers peuvent être utilisés dans la gestion des risques
- * Savoir organiser et gérer un processus d'investissement
- * Connaître les divers risques financiers et comment les banques sont régulées
- * Connaître les définitions, mesures et évaluations des risques financiers
- * Connaître les principes de base de gestion des données dans les projets de data science

Description du programme

This course unit consists of three courses Portolio management, Applied finance and Financial risk management, of 24 hours each, and is complemented by the second part of the data project (9 hours course and 12 hours project) devoted to data issues.

Portfolio management

- 1. Introduction to portfolio management
- 2. Equity Investing and investment process
- 3. Fixed Income Investing basics
- 4. Fixed Income Investing advanced

- 5. Alternative asset classes and Performance Measurement
- 6. Asset management trends
- 7. Project: Portfolio construction

Applied finance

- 1. Applied corporate finance From startup to IPO... and LBO
 - i. Introduction / Presentation
 - ii. Application areas of
 - iii. Accounting Basic Methods
 - iv. Valuation methods
 - v. We know how to value a company. Now what? Different types of operation
 - vi. Introduction to Fintech and start-up ecosystem
- 2. Applied market finance Options: Pricing, Hedging & Risk Management
 - i. Market finance: players and products
 - ii. Future and forward: pricing & hedging
 - iii. Options: replication and pricing
 - iv. Sensitivity of options: the greeks
 - v. Volatility and stress tests

Financial risk management

- 1. Introduction: bonds and OTC transactions
- 2. Modelling defaults: structural models and ratings
- 3. Banking regulation on credit risk; market and counterparty credit risk
- 4. Overview of the VaR methodologies and pros/cons for each
- 5. Monte Carlo techniques applied in Finance

Data science projects: data issues

- 1. Starting a data science project
- 2. The constraints of data science projects
- 3. Finding data
- 4. Acquiring information
- 5. Playing with data

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Connaitre l'écosystème financier. Comprendre les différences et similitudes entre finance de marché et finance d'entreprise.
- * Connaître le secteur de la gestion de portefeuille et l'objectif de chacun des acteurs
- * Comprendre les bases de théorique de la gestion de portefeuille et comment se construit un portefeuille.
- * Connaitre l'ensemble des classes d'actifs
- * Connaitre les divers méthodes d'évaluation d'entreprise et les processus de modélisation d'opérations financière (tels les LBO ou l'investissement en capital risque).
- * Comprendre le rôle des options dans la couverture et la gestion des risque, et savoir comment elles sont évaluées.
- * Connaître le cadre réglementaire des banques et comprendre comment le suivi des risques (de marché, de contrepartie et de crédit) est réalisé.
- * Savoir manipuler des données pour commencer un projet en data science

Modalité de contrôle des connaissances

- * Examen écrit (Financial risk management): 30%
- * Projet en groupe et présentation (Portfolio management): 35%
- * Projet (Applied finance): 35%

Bibliographie

Portfolio management

- * Roland Portait, Patrice Poncet (2014) "Market Finance"
- * Franck J. Fabozzi (2012) "The Handbook of Fixed Income Securities"

Applied finance

- * Vernimmen, P. (2021). Finance d'entreprise. Dalloz
- * Hull, J. (2018). Options, Futures, and Other Derivatives, 10th Edition. Pearson

Financial risk management

- * Gourieroux C. and Tiomo, A. (2007) Risque de crédit : une approche avancée, Economica.
- * Roncalli (2016). Risk Management & Financial Regulation (http://thierry-roncalli.com)

Data science projects

- * Zeng, A and Casari, A. Feature Engineering for Machine Learning. O'Reilly Media.
- * Müller, A. and Guido, S. Introduction to Machine Learning with Python. O'Reilly Media.

Equipe pédagogique

- * Portfolio management: Grégoire Hug (WeeFin)
- * Applied finance: Julien Belon (Arx Corporate Finance), Vincent Bonnamy (La Banque Postal Asset Management)
- * Financial risk management: Reda Rahal (BNP Paribas)
- * Data science projects: Maximilien Défourné (Mantiks)

Objectif de Développement Durable

Partenariats pour la réalisation des objectifs

Réduction des inégalités

Total des heures		100h
Cours	Cours Magistral	81h
Projet	Projets	19h

Parcours Données et décision

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- * Connaissances en optimisation, probabilités et statistique (équivalent des contenus de MAT-1A et de l'Approfondissement MIE M1)
- * Connaissances en algorithmique et en programmation Python (équivalent du contenu de INFO-1A)

Objectifs d'apprentissage

- * Connaître les principes de base de gestion des données dans les projets de data science.
- * Savoir acquérir, agréger et manipuler des données.
- * Savoir modéliser les problèmes de régression et de classification standards et savoir utiliser un langage informatique approprié pour implémenter les solutions des problèmes.
- * Savoir utiliser les données pour prendre des décisions.
- * Comprendre l'importance de la gouvernance et la qualité des données

Description du programme

This course unit consists of three courses Statistical learning, Python for data science and Data-driven decision making, of 24 hours each, and is complemented by the second part of the data project (9 hours course and 12 hours project) devoted to data issues.

Statistical learning

- 1. Introduction
 - i. Classical problems: regression, classification

- ii. Supervised, unsupervised and semi-supervised learning
- iii. Curse of dimensionality
- 2. Regression
 - i. Multiple linear regression, OLS method
 - ii. Shrinkage-type methods (LASSO, Ridge)
 - iii. k-nearest neighbors
- 3. Classification
 - i. Logistic regression
 - ii. k-nearest neighbors
 - iii. SVM
 - iv. Rosenblatt perceptron and neuronal networks

Python for data science

- 1. Dataframe: data exploration and data description
 - i. Spotting patterns using factor
 - ii. Principal Component Analysis
 - iii. Correspondence analysis
- 2. Prediction using trend analysis
 - i. Linear regression
 - ii. Logistic regression
- 3. Data classification
 - i. Classification using partitions
 - ii. Hierarchical methods

Data-driven decision making

- 1. What is data?
- 2. How do we take decision?
- 3. Data governance and data quality
- 4. How to develop data-based decision making?
- 5. Data platform and data architecture

Data science projects: data issues

- 1. Starting a data science project
- 2. The constraints of data science projects
- 3. Finding data
- 4. Acquiring information
- 5. Playing with data

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir manipuler des données pour commencer un projet en data science
- * Savoir appliquer les méthodes classiques pour la classification supervisée et non-supervisée et savoir comparer plusieurs modèles.

- * Savoir appliquer les méthodes standards de régression (Moindres Carrés Ordinaires) et des méthodes avancées pour sélectionner les variables et tenir compte de la malédiction de la dimension (Ridge, LASSO, Elastic Net)
- * Savoir appliquer des méthodes de réduction de dimensionnalité et de description des données telles que l'ACP et l'Analyse des correspondances.
- * Etre capable de construire des indicateurs de performance pour un modèle appliqué à des données.
- * Comprendre et mesurer la valeur des données.

Modalité de contrôle des connaissances

- * Tests et projets (Statistical learning): 30%
- * Projet (Python for data science): 35%
- * Projet de groupe et présentation (Data-driven decision making): 35%

Bibliographie

Statistical Learning

- * James G., Witten D., Hastie T. and al. (2013). An introduction to statistical learning: with applications in R. New York: Springer
- * Hastie T., Tibshirani R. and Friedman J. (2013). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.
- * Cornillon P-A., Matzner-Løber E. et al. (2010). Régression avec R. Paris: Springer.

Python for data science

* Jannach, D., Zanker, M., Felfernig, A. and Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge.

Data science projects

- * Zeng, A and Casari, A. Feature Engineering for Machine Learning. O'Reilly Media.
- * Müller, A. and Guido, S. Introduction to Machine Learning with Python. O'Reilly Media.

Equipe pédagogique

- * Statistical learning: Christophe Pouet (Centrale Marseille)
- * Python for data science: François Brucker (Centrale Marseille), Emmanuel Daucé (Centrale Marseille)
- * Data-driven decision making: Mickaël Chalamel (Yves Saint-Laurent), Franck Chevalier (EY)
- * Data project: Maximilien Défourné (Mantiks)

Objectif de Développement Durable

Partenariats pour la réalisation des objectifs

Total des heures		100h
Cours	Cours Magistral	81h
Projet	Projets	19h

Mathématiques et Modélisation pour le Climat, la Terre et l'Humain (CLIMATHS)

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Temps 1	Module				8
Cours introductif	Module	12h			
Harmonisation en analyse et en statistique	Module	20h	14h		
Data Science	Module	12h			
Transport routier	Module	20h			
Calcul Haute performance	Module				
	Nature	СМ	TD	TP	Crédits
Temps 2	Module				8
Conférences	Module				
Optimisation et contrôle	Module	9h	9h		
Couplage et modèles : Economie, écologie, société	Module	18h			
Calcul scientifique	Module	12h	12h		
Mathematical Problems in Climate Dynamics	Module	12h			
Attestation Bilan Carbone	Module				
EDP en biologie : Croissance, réaction, mouvement	Module	12h	4h	8h	

Temps 1

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Cours introductif	Module	12h			
	Nature	СМ	TD	TP	Crédits
Harmonisation en analyse et en statistique	Module	20h	14h		
	Nature	СМ	TD	TP	Crédits
Data Science	Module	12h			
	Nature	СМ	TD	TP	Crédits
Transport routier	Module	20h			
	Nature	СМ	TD	TP	Crédits
Calcul Haute performance	Module				

Cours introductif

Présentation

Total des heures 12h

Nouvelles heures d'enseignement

Cours Magistral

12h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Rodolphe Meyer

■ rmeyer@intervenants.centrale-marseille.fr

Harmonisation en analyse et en statistique

Présentation

Total des heures		34h
Nouvelles heures d'enseignement	Cours Magistral	20h
Nouvelles heures d'enseignement	Travaux Dirigés	14h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Guillaume Chiavassa

guillaume.chiavassa@centrale-marseille.fr

Responsable pédagogique

Jacques Liandrat

jacques.liandrat@centrale-marseille.fr

Responsable pédagogique

Christophe Pouet

christophe.pouet@centrale-marseille.fr

Responsable pédagogique

Magali Tournus

magali.tournus@centrale-marseille.fr

Responsable pédagogique

Thierry Goudon

■ tgoudon@intervenants.centrale-marseille.fr

Data Science

Présentation

Total des heures		12h
Nouvelles heures d'enseignement	Cours Magistral	12h

Transport routier

Présentation

Total des heures 20h

20h

Nouvelles heures d'enseignement Cours Magistral

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Goudon

■ tgoudon@intervenants.centrale-marseille.fr

Calcul Haute performance

Temps 2

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Conférences	Module				
	Nature	СМ	TD	TP	Crédits
Optimisation et contrôle	Module	9h	9h		
	Nature	СМ	TD	TP	Crédits
Couplage et modèles : Economie, écologie, société	Module	18h			
	Nature	СМ	TD	TP	Crédits
Calcul scientifique	Module	12h	12h		
	Nature	СМ	TD	TP	Crédits
Mathematical Problems in Climate Dynamics	Module	12h			
	Nature	СМ	TD	TP	Crédits
Attestation Bilan Carbone	Module				
	Nature	СМ	TD	TP	Crédits
EDP en biologie : Croissance, réaction, mouvement	Module	12h	4h	8h	

Centrale Formation ingénieur centralien

Conférences

Présentation

Total des heures		8h
Nouvelles heures d'enseignement	Autres	8h

Optimisation et contrôle

Présentation

Total des heures		18h
Nouvelles heures d'enseignement	Cours Magistral	9h
Nouvelles heures d'enseignement	Travaux Dirigés	9h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Magali Tournus

magali.tournus@centrale-marseille.fr

Couplage et modèles : Economie, écologie, société

Présentation

Total des heures 18h

Nouvelles heures d'enseignement Cours Magistral 18h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Etienne Espagne

eespagne@intervenants.centrale-marseille.fr

Responsable pédagogique

Quentin Couix

□ qcouix@intervenants.centrale-marseille.fr

Calcul scientifique

Présentation

Total des heures		24ł
Nouvelles heures d'enseignement	Cours Magistral	12ł
Nouvelles heures d'enseignement	Travaux Dirigés	12ł

Infos pratiques

Mathematical Problems in Climate Dynamics

Présentation

Total des heures		12h
Nouvelles heures d'enseignement	Cours Magistral	12h

Infos pratiques

Attestation Bilan Carbone

EDP en biologie : Croissance, réaction, mouvement

Présentation

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	12h
Nouvelles heures d'enseignement	Travaux Dirigés	4h
Nouvelles heures d'enseignement	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Guillaume Chiavassa

guillaume.chiavassa@centrale-marseille.fr

Responsable pédagogique

Jacques Liandrat

□ jacques.liandrat@centrale-marseille.fr

Responsable pédagogique

Magali Tournus

magali.tournus@centrale-marseille.fr

De la ressource au produit. Chimie et procédés durables (GREEN)

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Temps 1 : Tronc Commun	Module	36h	6h	54h	8
De la Ressource au produit : la pratique	Module				
De la Ressource au produit : l'analyse	Module				
De la Ressource au produit : La chimie industrielle	Module				
	Nature	СМ	TD	TP	Crédits
Temps 2 : 2 Electifs au choix	Module				
Smart Chemistry	Module	44h	26h	30h	8

Temps 1: Tronc Commun

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Chimie générale, connaissance de base sous Matlab, Excel (GP)

Objectifs d'apprentissage

Ce module est divisé en trois parties. La première est consacrée aux travaux pratiques en chimie et en génie des procédés. La deuxième concerne la chimie analytique et a pour objectif de donner des connaissances de base sur les techniques analytiques et de travailler avec certaines d'entre elles. La troisième est consacrée à la chimie industrielle et vise à découvrir les préoccupations actuelles de l'industrie chimique pour construire celle de demain tout en s'emparant de la problématique de l'impact environnemental des effluents industriels

Description du programme

Travaux pratiques chimie et génie des procédés

Chimie analytique:

- * Introduction
- * Spectroscopie RMN
- * visite et conférence du Spectropole
- * Analyses sur mini-projets/TP

Une brève présentation des différentes techniques utilisées suivie d'une mise en pratique. La pratique se fait en petits groupes dans lesquels les étudiants doivent résoudre un problème donné. Les problèmes peuvent être techniques (par exemple : courbes HETP,

détermination du volume mort d'une colonne...), théoriques (détermination de l'enthalpie de vaporisation par GC ou constantes de Hammet par spectroscopie UV...) ou pratiques (teneur en théobromines dans le chocolat, métabolites secondaires dans les agrumes...).

Chimie industrielle:

- * Introduction (ODD, ressources, cycle de l'eau industrielle)
- * Réglementation Reach
- * Economie d'atome
- * D'une raffinerie à une bioraffinerie (ex : La Mede) :comparaison des unités, thermodynamique, simulation, conception
- * Réacteur: avancement, vitesse de réaction, sélectivité, RPA, Piston, transfert thermique

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Connaître et appliquer les bonnes pratiques de laboratoire
- Utiliser les matériels de base de l'expérimentation en GP/Chimie
- Utiliser les matériels de base d'analyse en GP/Chimie
- Être capable de mettre en œuvre un protocole expérimental et/ou un mode opératoire
- Analyser et exploiter des résultats d'expérience
- Rédiger un rapport scientifique & technique

Modalité de contrôle des connaissances

Contrôle continu (rapport)

Bibliographie

- Un document présentant les différentes techniques d'analyse (avantages et inconvénients, limites d'utilisation...)
- Un document axé sur les méthodes de séparation (essentiellement des chromatographies)

Equipe pédagogique

Damien HERAULT

Pascal DENIS

Didier NUEL

Innocenzo De RIGGI

Audrey SORIC

Nelson IBASETA

Jérémy DELVIGNE (EXT)

Fabio ZIARELLI (EXT)

Objectif de Développement Durable

 ∞

Accès à l'eau salubre et l'assainissement

Villes et communautés durables

Consommation et production responsables

Lutte contre le changement climatique

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	36h
Nouvelles heures d'enseignement	Travaux Dirigés	6h
Nouvelles heures d'enseignement	Travaux Pratiques	54h
Nouvelles heures d'enseignement	Projets	4h

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
De la Ressource au produit : la pratique	Module				
	Nature	СМ	TD	TP	Crédits
De la Ressource au produit : l'analyse	Module				
	Nature	СМ	TD	TP	Crédits
De la Ressource au produit : La chimie industrielle	Module				

Infos pratiques

Nom responsable UE

Responsable pédagogique

Damien Herault

■ damien.herault@centrale-marseille.fr

De la Ressource au produit : la pratique

De la Ressource au produit : l'analyse

Présentation

Prérequis

Aucun

Objectifs d'apprentissage

Ce module est consacré à l'apprentissage des techniques de l'analyse chimique.

Il s'agit d'apprendre et de mettre en oeuvre différentes techniques utilisées en chimie analytique. Cet apprentissage est fait sous la forme de mini projets. Les étudiants travaillent en petits groupes et sont doivent résoudre un problème donné. Les sujets se répartissent en trois catégories :

- * Techniques : liés à la mise en ouvre et au paramétrages de différentes techniques analytiques (par exemple : courbes HETP, détermination du volume mort d'une colonne...),
- * Théoriques : (détermination de l'enthalpie de vaporisation par chromatographie en phase gaz, déterminations de constantes de Hammet par spectroscopie UV, déterminations de constantes d'associations par RMN ...)
- * Pratiques : (teneur en théobromine dans le chocolat, métabolites secondaires dans les agrumes ...).

Description du programme

- * Présentation des différentes techniques utilisées en chimie analytique (2h)
- * Présentation de la RMN (2h)
- * Mini projet sur un sujet donné (20h en laboratoire)

Compétences et connaissances scientifiques et techniques visées dans la discipline

* Analyser un problème à partir d'un sujet volontairement succinct.

- * Elaborer une solution.
- * Mettre en œuvre la solution proposée.
- * Acquérir des connaissances théoriques et pratiques sur les techniques de chimie analytique.
- * Ecrire un rapport scientifique.

Modalité de contrôle des connaissances

Rapport écrit

Bibliographie

Frank, C. (2012). Analytical Chemistry. États-Unis: Elsevier Science.

Christian, G. D. (2007). ANALYTICAL CHEMISTRY, 6TH ED. Wiley.

McNair, H. M., Miller, J. M. & Snow, N. H. (2019). Basic Gas Chromatography (3e éd.). Wiley.

Saurabh. (2020, 3 septembre). HPLC training. Lab-Training.com. Lab-Training.com. https://lab-training.com/high-performance-liquid-chromatography/

Moldoveanu, S. C. & David, V. (2022). Essentials in Modern HPLC Separations (2e éd.). Elsevier.

Equipe pédagogique

Innocenzo De Riggi

Didier Nuel

Total des heures 0h

De la Ressource au produit : La chimie industrielle

Temps 2: 2 Electifs au choix

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Smart Chemistry	Module	44h	26h	30h	8
	Nature	СМ	TD	TP	Crédits
Efficacité énergétique et contrôle des émissions	Module	46h	22h	18h	8

Smart Chemistry

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Ensemble des enseignements de Chimie du tronc 1A commun du cursus d'ingénieur centralien marseillais, à savoir :

Structure et des propriétés des molécules

Réactivité moléculaire organique et organométallique.

Objectifs d'apprentissage

Consolider et compléter le socle des connaissances acquises en Chimie par les élèves de l'école.

Cette UE qui partira du fondamental pour aller vers l'appliqué, permettra également aux étudiants de connecter entre eux les différents aspects de la chimie (organique, spectroscopie, thermodynamique cinétique...) et d'établir des liens avec d'autres disciplines (physiques et biologie)

Dans le sens de l'évolution vers une chimie plus "durable" (chimie verte), nous aborderons certains principes et les applications des méthodes récentes et industrialisées de transformations moléculaires.

Ces techniques s'appuient très souvent sur des procédés faisant intervenir des matériaux ou milieux sophistiqués. Nous présenterons parallèlement la préparation de ces milieux polyphasiques ainsi que leurs propriétés.

Description du programme

Tronc commun: Travaux pratiques chimie et/ou génie des procédés, Conférences industrielles

	organique

1''	himia	supramo	laira.	

- * Topologie moléculaire.
 - · Reconnaissance d'anions, de cations et de molécules neutres
 - Coopérativité
 - · Applications à la reconnaissance de molécules d'intérêt biologique

(neurotransmetteurs - sucres) - intérêt pour la biologie

- · Stéréochimie et chimie supramoléculaire
- · Chimie bio-inspirée
- · Chimie supramoléculaire dans l'eau

Catalyse:

- Principes et fonctionnement des réactions et catalyses en milieu polyphasique et propriétés des matériaux utilisés (catalyse hétérogène, catalyse supportée, catalyse biphasique). Synthèses en phase solide. Chimie supportée
- Catalyseurs solides acides ou basiques

Solvants alternatifs et activations non-usuelles

- Propriétés et utilisation de solvants alternatifs (CO2 supercritique, solvants fluorés, liquides ioniques, eau, biosolvants)
- Transfert de phases classiques ou faisant intervenir des récepteurs macromoléculaires

Compétences et connaissances scientifiques et techniques visées dans la discipline

Disposer de l'ensemble de connaissances indispensables à un ingénieur généraliste centralien souhaitant débuter une carrière industrielle ou académique dans le domaine de la Chimie.

Capacité à élargir à d'autres usages un outil ou un concept.

Capacité à collecter et analyser de l'information avec logique et méthode

Capacité à comprendre et formuler le problème (hypothèses, ordres de grandeur, etc...)

Capacité à reconnaître les éléments spécifiques d'un problème.

Capacité à proposer un ou plusieurs scénarios de résolution

Capacité à étudier et comprendre des systèmes complexes.

Capacité à comprendre le lien entre chimie fondamentale et l'appliquée.

Comprendre et étudier les systèmes supramoléculaires et plus généralement des systèmes complexes.

Comprendre le caractère physico-chimique des milieux alternatifs utilisés, leur apport en synthèse organique.

Modalité de contrôle des connaissances

Contrôle continu

Equipe pédagogique

Damien HERAULT

Pascal DENIS

Didier NUEL

Laurent GIORDANO

Alexandre MARTINEZ

Bastien CHATELET

Intervenants extérieurs industriels

Objectif de Développement Durable

Total des heures 100h

Nouvelles heures d'enseignement Cours Magistral 44h
Nouvelles heures d'enseignement Travaux Dirigés 26h
Nouvelles heures d'enseignement Travaux Pratiques 30h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Damien Herault

■ damien.herault@centrale-marseille.fr

Efficacité énergétique et contrôle des émissions

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Il s'agit d'acquérir la connaissance des principaux polluants et des différentes méthodes de traitement les plus usuellement mises en œuvre. Aussi il est important d'acquérir une expertise sur le choix du procédé le plus approprié en termes d'efficacité énergétique et de coût.

Description du programme

Tronc commun: Travaux pratiques chimie et/ou génie des procédés, Conférences industrielles

Enjeux de réduction des émissions, changement climatique, efficacité énergétique...

Les principaux procédés de traitement (phases gaz, liquide, solide)

Procédés choisis détaillés du traitement d'une phase gazeuse (absorption, réduction, perméation gazeuse, adsorptionet matériaux poreux)

TT et échangeurs (récupération d'énergie)

Prosim Simulation et gestion des flux

Traitement d'une phase liquide par reconnaissance de molécules en solution

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Innovation scientifique et technique
- Développement de nouveaux procédés plus économes et/ou plus efficaces,

en se basant sur une connaissance pointue des principes de base

- Maîtrise de la complexité et des systèmes
- Meilleure gestion de la chaîne production/traitement des effluents dans le

but de se rapprocher au maximum des objectifs de développement durable et si

possible de valorisation des effluents (processus lié à l'économie

circulaire).

Modalité de contrôle des connaissances

Contrôle continu

Equipe pédagogique

Nelson IBASETA

Damien HERAULT

Pascal DENIS

Pierrette GUICHARDON

Audrey SORIC

Alexandre MARTINEZ

Bastien CHATELET

Intervenants extérieurs industriels

Objectif de Développement Durable

Accès à l'eau salubre et l'assainissement

Villes et communautés durables

Consommation et production responsables

Lutte contre le changement climatique

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	46h
Nouvelles heures d'enseignement	Travaux Dirigés	22h
Nouvelles heures d'enseignement	Travaux Pratiques	18h
Nouvelles heures d'enseignement	Projets	14h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Nelson Ibaseta Garrido

nelson.ibaseta@centrale-marseille.fr

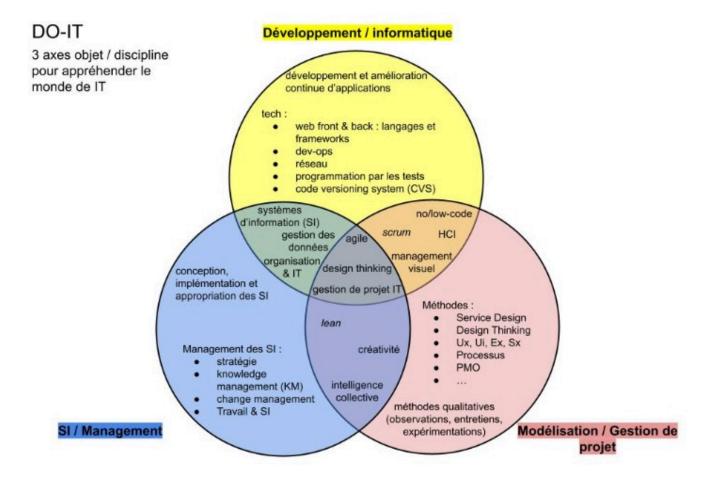
Info (INFO)

Présentation

Objectifs d'apprentissage

Par nature et en raison de la vitesse avec laquelle les technologies numériques se transforment, le domaine de l'IT est en perpétuel mouvement, en mutation. Loin de marquer une "révolution" vers un nouvel état qui cesserait de changer une fois optimisé, le changement constitue l'essence même de l'IT. Et pour cause : répondre à un besoin modifie l'environnement qui, à son tour, vient transformer le besoin. **Ainsi, transformation technologique et facteur humain sont indissociables.**

Ce parcours repose sur cette approche systémique des transformations technologiques et des facteurs humains. Elle s'adresse à des élèves voulant :


- * soit s'orienter vers le développement informatique,
- * soit s'orienter vers la modélisation et la gestion de projet IT,
- * soit s'orienter vers le management des systèmes d'information,
- * soit encore voulant mixer les connaissances en organisation et en développement.

De plus, *do-it* est en **partenariat avec les masters 2** ☑ GIG (géométrie et informatique graphique), ☑ SID (science et ingénierie des données) et ☑ IMD (informatique et mathématiques discrètes), que les élèves − s'ils le souhaitent et sous réserve d'acceptation par les responsables des différents masters − peuvent suivre en parallèle (les horaires sont aménagés).

Enfin, un élève suivant le parcours do-it peut : soit suivre les 3 temps proposés par le parcours, soit panacher avec les UEs optionnelles du temps 2 (SDAS, partagée par l'option PICSEL) et du temps 3 (IoT, option INFO).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Total des heures 0h

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Parcours DO-IT : Développement et Organisation en IT	Module				
Temps 1 : Comprendre	Module	40h	10h		
Développement : bases	Module				
Organisation : besoin client	Module	50h			4
Formation tutorée	Module				
Projet	Module				
Temps 2 : Faire	Module	40h	10h		
Développement : applications web	Module				
Organisation : création de services	Module				
Formation tutorée	Module				2
Projet	Module				
Science des données et apprentissage statistique	Module	44h	12h	18h	8
	Nature	СМ	TD	TP	Crédits
Parcours IAM : Intelligence Artificielle et Apprentissage Machine	Module				
Temps 1 : Fondamentaux du ML et de l'IA moderne	Module				
Data Science	Module				3
Deep Learning	Module				
Analyse et manipulation de données	Module				
Optimisation	Module				
Apprentissage sur graphes	Module				
Temps 2 : ML et IA avancés	Module				
Apprentissage par renforcement	Module				
Apprentissage, Signal et Multimédia	Module				
Prédiction structurée pour le Traitement Automatique des Langues	Module				
Théorie de l'apprentissage Statistique	Module				
Science des données et apprentissage statistique	Module	44h	12h	18h	8

Parcours DO-IT : Développement et Organisation en IT

Présentation

Objectifs d'apprentissage

Par nature et en raison de la vitesse avec laquelle les technologies numériques se transforment, le domaine de l'IT est en perpétuel mouvement, en mutation. Loin de marquer une "révolution" vers un nouvel état qui cesserait de changer une fois optimisé, le changement constitue l'essence même de l'IT. Et pour cause : répondre à un besoin modifie l'environnement qui, à son tour, vient transformer le besoin. **Ainsi, transformation technologique et facteur humain sont indissociables.**

Ce parcours repose sur cette approche systémique des transformations technologiques et des facteurs humains. Elle s'adresse à des élèves voulant :

- * soit s'orienter vers le développement informatique,
- * soit s'orienter vers la modélisation et la gestion de projet IT,
- * soit s'orienter vers le management des systèmes d'information,
- * soit encore voulant mixer les connaissances en organisation et en développement.

De plus, *do-it* est en **partenariat avec les masters 2** 🗹 GIG (géométrie et informatique graphique), 🗹 SID (science et ingénierie des données) et 🗹 IMD (informatique et mathématiques discrètes), que les élèves — s'ils le souhaitent et sous réserve d'acceptation par les responsables des différents masters — peuvent suivre en parallèle (les horaires sont aménagés).

Enfin, un élève suivant le parcours do-it peut : soit suivre les 3 temps proposés par le parcours, soit panacher avec les UEs optionnelles du temps 2 (SDAS, partagée par l'option PICSEL) et du temps 3 (IoT, option INFO).

Description du programme

Le parcours est organisé en trois temps de 100h planifiées sur 6 semaines (environ), et d'un projet de 100h tout au long de l'année.

Chaque temps est organisé de la même manière. L'élève doit :

- * suivre 5 cours de 12h (CT Cours Théoriques)
- * réaliser un projet de 20h (POK proof of knowledge différent du projet de 100h) utilisant les connaissances acquises pendant le temps
- * réaliser 2 sujets d'autoformation de 10h chacun, pour acquérir les connaissances et savoir-faire nécessaires à la réalisation des projets, sous la direction d'un tuteur pédagogique (MON monitoring of novelties)

Des jalons réguliers sont programmés (3 ou 4 par temps) pour que chaque élève présente au reste de la promotion les avancées de ses POK et MON.

La spécificité de ce parcours est que chaque élève est suivi par l'équipe pédagogique (les responsables de chaque axe) qui l'aide à créer un plan d'apprentissage pour chaque temps (différent selon le bagage de chaque élève). Ce plan sera composé à partir des cours en présentiel et des connaissances disponibles en auto-formation pour que l'élève puisse mener à bien ses projets et préparer son entrée dans la vie active.

Un élève pourra, selon son projet professionnel, se consacrer exclusivement au développement informatique, au management des SI ou à la création de services, ou bien faire un mix des trois spécialisations.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Do-it est organisé en 3 axes :

* D/I : Développement / Informatique

* SI/M: SI / Management

* M/GP: Modélisation / Gestion de projet

qui adressent une vaste gamme de projets professionnels de l'IT et peuvent s'insérer dans la quasi-totalité des entreprises et champs disciplinaires.

Ces trois axes ont de fortes connexions entre eux, comme le présente le diagramme de venn suivant :

Les 3 temps sont décris précisémment dans le doc suivant : L' https://docs.google.com/document/d/1QcyzhJ_Rg16tixN2PcZTEu_CqbW1sS2GlfbP_gf1ZkU

Modalité de contrôle des connaissances

contrôle continu.

Total des heures 0h

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Temps 1 : Comprendre	Module	40h	10h		
Développement : bases	Module				
Organisation: besoin client	Module	50h			4
Formation tutorée	Module				
Projet	Module				
	Nature	СМ	TD	TP	Crédits
Temps 2 : Faire	Module	40h	10h		
Développement : applications web	Module				
Organisation : création de services	Module				
Formation tutorée	Module				2
Projet	Module				
Science des données et apprentissage statistique	Module	44h	12h	18h	

Temps 1 : Comprendre

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

Les CT, POK et MONs de ce temps vivent à l'acquisition des compétences ci-après. Selon leurs choix, les élèves en acquérons un sous-ensemble particulier.

Axe SI/M

- * Définir la notion de système d'information et identifier ses composantes techniques, organisationnelles et informationnelles.
- * Connaître les différents types de SI et leurs fonctions
- * Comprendre comment les interactions entre acteurs et avec la technologie reproduisent et transforment l'organisation
- * Appréhender des outils de modélisation des processus
- * Cartographier les acteurs et le fonctionnement d'une organisation

Axe D/I

- * savoir utiliser un langage de programmation pour aider à automatiser les tâches courantes d'un ingénieur dans l'IT
- savoir créer un petit site informatif ou de blogs
 - * pouvoir développer un site web avec une partie front et back

Axe M/GP

- * Comprendre les principes de fonctionnement d'un service par sa modélisation pour appréhender la faisabilité de la création ou l'évolution d'un nouveau service et sa valeur ajoutée
 - * S'organiser en équipe en suivant les principes agile pour en discerner les spécificités de leur mobilisation
 - * Comprendre la notion d'expérience utilisateur dans la conception de produits digitaux pour évaluer/concevoir les parcours utilisateurs

- * Connaître les étapes de la démarche Design Thinking / Design Sprint et mettre en oeuvre les premières étapes
- * Réaliser un travail d'exploration des besoins et en déduire une analyse précise des opportunités
- Mobiliser l'intelligence collective pour faire émerger une offre de valeur précise et pertinente

Description du programme

CT

Ce temps comporte deux CT obligatoires qui constituent le tronc commun de do-it. Chaque élève doit donc uniquement choisir 3 CT parmi les autres.

Tronc commun

Tronc Commun: Introduction des axes

- * 4h Définition et fonctions d'un SI (SI/M)
 - * 4h Gestion des sources avec git/github (D/I)
 - * 4h Service Design (M/GP)

Tronc Commun: Gestion de Projets Agile

Organiser ses projets de façon agile et gérer la relation client.

CT au choix

- * Systèmes d'information et configurations organisationnelles (SI/M)
- * Serveur Web 101 (D/I)

Bases du développement de serveur web avec Flask

* Java/gradle (D/I)

Langage Java et gestion des dépendances

* Expérience Utilisateur (M/GP)

Comprendre la notion d'expérience utilisateur dans la conception de produits digitaux pour évaluer/concevoir les parcours utilisateurs possibles

* Intelligence collective (M/GP)

Mobiliser l'intelligence collective pour faire émerger une offre de valeur précise et pertinente

POK

Par groupe de 1 ou 2 élèves (max). Plusieurs groupes peuvent choisir le même POK.

- * Configurations organisationnelles dans le secteur de l'IT (SI/M)
- Typologie des plateformes numériques (SI/M)
- * Mon site chez moi (D/I)

* Examen d'un service (M/GP)

MON

Travail individuel. Plusieurs élèves peuvent choisir le même MON, mais chacun rendra un travail séparé. Il faut choisir 2 MONs, le premier sera fait pendant la première moitié du temps, le second pendant l'autre moitié. Une liste possible est donnée, mais les élèves peuvent choisir ce qu'il veulent.

Modalité de contrôle des connaissances

Contrôle continu

Equipe pédagogique

- * François Brucker
- * Florian Magnani
- * Lætitia Piet

Objectif de Développement Durable

Partenariats pour la réalisation des objectifs

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	40h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Projets	25h
Nouvelles heures d'enseignement	Autres	25h

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Développement : bases	Module				
	Nature	СМ	TD	TP	Crédits
Organisation : besoin client	Module	50h			4
	Nature	СМ	TD	TP	Crédits
Formation tutorée	Module				
	Nature	СМ	TD	TP	Crédits
Projet	Module				

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Développement : bases

Organisation: besoin client

Présentation

Total des heures 50h

50h

Nouvelles heures d'enseignement Cours Magistral

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laetitia Piet

■ laetitia.piet@centrale-marseille.fr

Formation tutorée

Projet

Temps 2: Faire

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Temps 1 option DO-IT

Objectifs d'apprentissage

Les CT, POK et MONs de ce temps vivent à l'acquisition des compétences ci-après. Selon leurs choix, les élèves en acquérons un sous-ensemble particulier.

Axe SI/M:

- * Réaliser le diagnostic d'une organisation et clarifier son positionnement stratégique
- * Mobiliser les théories et les outils du management stratégique dans la conduite des projets en SI
- * Modéliser un SI
- * Savoir mettre en oeuvre une démarche d'évaluation de la maturité de la transformation digitale

Axe D/I:

- * déploiement d'un projet informatique sur un serveur distant
- * gestion et échanges de données
 - * compréhension des différentes partie d'un projet web (front, back, données)

Axe M/GP:

- * * Comprendre les enjeux autour de l'ergonomie des solutions en prenant en considération le design graphique et les usages
 - * Distinguer les apports du lean par rapport aux principes agiles : interfaces, pilotage et obeya
 - * S'organiser en équipe pour tirer pleinement partie des compétences de chacune des individualités

Description du programme

CT

Cinq CT au choix.

- * Stratégie d'entreprise et Systèmes d'information (SI/M)
- * Architecture des SI (SI/M)
- réseaux (D/I)
- serveur distant (D/I)
 - * structures de données (D/I)
- * Interface utilisateur (M/GP)
- * Lean engineering (M/GP)
- * Gestion d'équipe performante (M/GP)

POK

Par groupe de 1 ou 2 élèves (max). Plusieurs groupes peuvent choisir le même POK.

- * Cartographier le système d'information d'une organisation (SI/M)
- * Réaliser le diagnostic de la maturité de la transformation digitale d'une organisation (SI/M)
- * Déployer un site web sur un serveur distant (D/I)
- * Réaliser un prototypage d'une offre de service innovante pour un marché identifié (des opportunités jusqu'au mvp) pour affiner la compréhension des usages (M/GP)

MON

Travail individuel. Plusieurs élèves peuvent choisir le même MON, mais chacun rendra un travail séparé. Il faut choisir 2 MONs, le premier sera fait pendant la première moitié du temps, le second pendant l'autre moitié. Une liste possible est donnée, mais les élèves peuvent choisir ce qu'il veulent.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Créer de la valeur par l'innovation (projet)

S'inscrire dans une vision stratégique (cours)

Maitriser la complexité (projet, cours)

Diriger des programmes (projet, cours)

Modalité de contrôle des connaissances

Contrôle continu

Bibliographie

- * La https://francoisbrucker.github.io/cours_informatique/index.html
- * La https://doc.ubuntu-fr.org/ssh
- * Gaudichau, O, Matsumoto, E et Magnani, F. (2019) Lean à 540°, AFNIL
- * Ries, E. (2015) Lean start-up: adoptez l'innovation continue, Pearson
- * Lencioni, P. M. (2002). The Five Dysfunctions of a Team (2002). Josey-Bass.

Equipe pédagogique

- * François Brucker
- * Florian Magnani
- * Lætitia Piet

Objectif de Développement Durable

Accès à la santé

Partenariats pour la réalisation des objectifs

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	40h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Projets	25h
Nouvelles heures d'enseignement	Autres	25h

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Développement : applications web	Module				
	Nature	СМ	TD	TP	Crédits
Organisation : création de services	Module				
	Nature	СМ	TD	TP	Crédits
Formation tutorée	Module				2
	Nature	СМ	TD	TP	Crédits
Projet	Module				

Infos pratiques

Nom responsable UE

Responsable pédagogique

Florian Magnani

■ florian.magnani@centrale-marseille.fr

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Responsable pédagogique

Laetitia Piet

■ laetitia.piet@centrale-marseille.fr

Développement : applications web

Organisation : création de services

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Formation tutorée

Présentation

Total des heures		25h
Nouvelles heures d'enseignement	Autres	25h

Projet

Parcours IAM : Intelligence Artificielle et Apprentissage Machine

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Temps 1 : Fondamentaux du ML et de l'IA moderne	Module				
Data Science	Module				3
Deep Learning	Module				
Analyse et manipulation de données	Module				
Optimisation	Module				
Apprentissage sur graphes	Module				
	Nature	СМ	TD	TP	Crédits
Temps 2 : ML et IA avancés	Nature Module	СМ	TD	TP	Crédits
Temps 2 : ML et IA avancés Apprentissage par renforcement		СМ	TD	TP	Crédits
•	Module	СМ	TD	TP	Crédits
	Module Module	СМ	TD	TP	Crédits
Apprentissage par renforcement Apprentissage, Signal et Multimédia	Module Module Module	СМ	TD	TP	Crédits

Temps 1 : Fondamentaux du ML et de l'IA moderne

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Data Science	Module				3
	Nature	СМ	TD	TP	Crédits
Deep Learning	Module				
	Nature	СМ	TD	TP	Crédits
Analyse et manipulation de données	Module				
	Nature	СМ	TD	TP	Crédits
Optimisation	Module				
	Nature	СМ	TD	TP	Crédits
Apprentissage sur graphes	Module				

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Artieres

■ thierry.artieres@centrale-marseille.fr

Data Science

Deep Learning

Analyse et manipulation de données

Optimisation

Apprentissage sur graphes

Temps 2 : ML et IA avancés

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Apprentissage par renforcement	Module				
	Nature	СМ	TD	TP	Crédits
Apprentissage, Signal et Multimédia	Module				
	Nature	СМ	TD	TP	Crédits
Prédiction structurée pour le Traitement Automatique des Langues	Module				
	Nature	СМ	TD	TP	Crédits
Théorie de l'apprentissage Statistique	Module				

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Artieres

■ thierry.artieres@centrale-marseille.fr

Apprentissage par renforcement

Apprentissage, Signal et Multimédia

Prédiction structurée pour le Traitement Automatique des Langues

Théorie de l'apprentissage Statistique

Tronc Commun

Liste des enseignements

	Nature	CM	TD	TP	Crédits
L'ingénieur face aux enjeux de création de valeur et croissance durable	Module	16h			1
Langues et Cultures Internationales 10	Module				1

L'ingénieur face aux enjeux de création de valeur et croissance durable

En bref

> Langue de cours: Français

Présentation

Description du programme

Au sein des entreprises comme des États, l'objectif de création de valeur gouverne de nombreuses décisions, notamment stratégiques. Les évolutions récentes mettent en évidence le caractère multidimensionnel de cette notion de valeur, qui ne peut se limiter à la valeur monétaire. Durant ce cycle de conférences, nous questionnerons les modalités de coexistence de ces différentes valeurs dans le monde de l'entreprise ainsi que l'élargissement des méthodes d'évaluation des acteurs publics (États, collectivités) pour prendre en compte les problèmes de soutenabilité. Nous interrogerons également la nécessité d'attribuer une valeur monétaire à la nature. Cette semaine sera ainsi l'occasion de confronter différents points de vue scientifiques et opérationnels autour des questions de création de valeur et de soutenabilité.

Modalité de contrôle des connaissances

Travail par groupe de 5 étudiants

Equipe pédagogique

- * Renaud BOURLES
- * Guillaume QUIQUEREZ

Total des heures 21h

Nouvelles heures d'enseignement

Cours Magistral

16h

Nouvelles heures d'enseignement

Apprentissage en Autonomie

5h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Vincent Merval

✓ vincent.merval@centrale-marseille.fr

Langues et Cultures Internationales 10

Infos pratiques

Nom responsable UE

Responsable pédagogique

Valérie Durbec

■ valerie.durbec@centrale-marseille.fr

Travail de Fin d'Etudes

Présentation

Objectifs d'apprentissage

L'objectif du stage TFE est de:

- Créer une passerelle vers le 1er emploi
- Etre capable de mener une étude de haut niveau sur les plans scientifiques, techniques et méthodologiques
- Prendre la responsabilité d'une mission d'ingénieur

Description du programme

Le stage de 3A est un stage obligatoire, dont la durée est comprise entre 4 et 6 mois (16 semaines a minima et 6 mois au maximum) se déroulant sur la période d'avril à septembre.

Modalité de contrôle des connaissances

L'évaluation finale est basée sur l'évaluation d'un rapport de stage, d'une soutenance et de l'appréciation de l'organisme d'accueil.

Bibliographie

Site des stages: https://stages-emplois.centrale-marseille.fr

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Muriel Roche

■ muriel.roche@centrale-marseille.fr

Options d'approfondissement

Liste des enseignements

		Nature	СМ	TD	TP	Crédit
Photonique, images, communicaion, signal, sciences de la lu	ımière (PICSEL)	Module				
Temps 3		Module				
Ingénierie Quantique et Technologies Emergentes		Module	50h	24h	10h	8
Systèmes embarqués		Module	40h	20h	40h	8
Technologies Spatiales		Module				8
Projet PICSEL		Module				5
		Nature	СМ	TD	TP	Crédit
Matériaux et structures, fluides, mer (MECA)		Module				
Parcours FETES : Fluides : énergie, transports, environneme	ent, santé	Module				
Temps 3		Module				
Méthodes numériques en mécanique		Module	10h	6h	8h	2
Méthodes expérimentales		Module	8h		16h	2
Energies nouvelles et renouvelables		Module	16h	8h		2
Dispersion de polluants		Module	16h	8h		2
Parcours Génie Mer (GM)		Module				
Temps 3		Module				
Méthodes numériques en mécanique		Module	10h	6h	8h	2
Méthodes expérimentales		Module	8h		16h	2
Spécialité éolien		Module				4
Spécialité naval		Module				4
Parcours Modélisation Mécanique des Matériaux et des Str	ructures (M3S)	Module				
Temps 3		Module				
Méthodes numériques en mécanique		Module	10h	6h	8h	2
Dynamique des structures		Module	16h	2h	6h	2
Comportement des matériaux - Grandes déformation	S	Module	12h	8h	4h	2
Outils logiciels en mécanique - Avancé		Module	4h		20h	2
Projet MECA		Module				5
		Nature	СМ	TD	TP	Crédit
Données et Décisions Economiques et Financières (DDEFI)		Module				
Temps 3 : Une spécialité au choix		Module				
Parcours Données et décision		Module				
Spécialité : Actuariat		Module	81h			8
Spécialité : Analyse et données		Module	80h			8
Parcours Finance		Module				
Spécialité : Mathématiques financières		Module	81h			8
Spécialité : Finance d'entreprise		Module	70h			8
Projet DDEFI		Module				5
568 / 675 Syllabo	ıs (2022-2023)	Nature	СМ	TD	TP	Crédit
Mathématiques et Modélisation pour le Climat, la Terre et l'H	lumain (CLIMATHS)	Module				
Tomps 2		Modulo				0

Photonique, images, communicaion, signal, sciences de la lumière (PICSEL)

Présentation

Objectifs d'apprentissage

PICSEL vise à former des ingénieurs pouvant répondre aux besoins liés à l'émergence de la société numérique : explosion des systèmes embarqués, objets communicants, besoins croissants en transmission et traitement de l'information, multiplication de smart devices, place grandissante de la simulation numérique, développement de nouvelles technologies de fabrication,...Les sciences liées aux thématiques de PICSEL font parties des 6 technologies génériques d'avenir (KET) identifiées par la Commission européenne, qui les considère comme les principaux moteurs de l'innovation.

Description du programme

Pour répondre à ces enjeux PICSEL propose un programme principalement basé sur des électifs qui permettra aux élèves de construire des parcours personnalisés centrés sur la Photonique et les Sciences de l'Information et de la Communication, avec de fortes compétences dans les domaines clés de l'imagerie et de la photonique, et une connaissance approfondie de la physique sous-jacente. Des comptabilités seront possibles avec des électifs externes (autre option de 3A apportant un complément thématique, Master Recherche).

Compétences et connaissances scientifiques et techniques visées dans la discipline

Les technologies liées à la Photonique, l'Image, la Communication et le Signal se caractérisent par leur capacité à irriguer de très nombreux secteurs industriels et domaines applicatifs, ainsi que leur forte intensité de R&D. Elles nourrissent des marchés très concurrentiels et en forte croissance (environnement, santé, automobile, aéronautique etc.), et recouvrent des domaines variés tels que les systèmes connectés, les véhicules autonomes, la réalité virtuelle, l'imagerie médicale,...

Dans ces secteurs l'ingénieur PICSEL pourra adresser aussi bien la gestion de projets complexes grâce à ses compétences généralistes et sa vision du domaine que la R&D de pointe par ses capacités de conceptualisation, de résolution de problèmes, et un esprit formé à l'innovation.

Total des heures 0h

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Temps 3	Module				
Ingénierie Quantique et Technologies Emergentes	Module	50h	24h	10h	8
Systèmes embarqués	Module	40h	20h	40h	8
Technologies Spatiales	Module				8
	Nature	СМ	TD	TP	Crédits
Projet PICSEL	Module				5

Temps 3

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Ingénierie Quantique et Technologies Emergentes	Module	50h	24h	10h	8
	Nature	СМ	TD	TP	Crédits
Systèmes embarqués	Module	40h	20h	40h	8
	Nature	СМ	TD	TP	Crédits
Technologies Spatiales	Module				8

Ingénierie Quantique et Technologies Emergentes

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Bases en optique et en physique quantique (cours de 1A); bases de probabilités/statistiques (cours de 1A)

Objectifs d'apprentissage

Ce module vise à présenter les bases théoriques nécessaires à la compréhension des technologies émergentes issues du domaine de la physique quantique, et à fournir un panorama actuel des domaines d'application de l'ingénierie quantique.

Description du programme

Cours et Travaux Dirigés.

- -Initiation à l'optique quantique: Aspects historiques ; De la quantification du champ EM aux états comprimés de la lumière et statistiques de photocomptage quantiques; Génération d'états comprimés du champs ; Application à l'imagerie et à la détection des ondes gravitationnelles (intervenant VIRGO/LIGO à définir) (JF),
- -Analogie entre optique géométrique/physique et mécanique classique/quantique (Hamilton versus de Broglie MA),
- -Cohérence et distribution de Wigner classique et quantique (MA),
- -Tomographie quantique (TD),
- -Aspects fondamentaux du gps (horloges atomiques, métrologie quantique TD),

- -Métrologie quantique à base d'atomes froids/ions piégés (intervenant C. Champenois PIIM),
- -Plan quantique, ordinateur quantique, information quantique (TD),
- -Télécommunications quantiques (intervenants extérieurs)

TP/Projets

- -Remises à niveau en physique quantique avec TPs numériques (approche de type boite noire) (TD),
- -Decoherence et effaceur quantique (TD plus demo. en plateforme optique TD et JF),
- -Nouvelles applications en rapport avec la polarisation (MA) (entre autres TP avec le kit Thorlabs de cryptographie quantique TD et JF).

Compétences et connaissances scientifiques et techniques visées dans la discipline

- -pour les projets: soft skills, mener un travail bibliographique, situer une problématique dans un contexte scientifique et applicatif général
- -pour les CC écrits: capacité de résoudre des problèmes simples en rapport avec le cours du type des exercices vus en TD et de comprendre la théorie (exemple: répondre à des questions de cours)
- -pour les TP. implication et participation, capacité d'observation et d'analyse

Modalité de contrôle des connaissances

Evaluation de type devoir sur table, rapports de TP, présentations travaux personnels issus d'un travail de bibliographique/modélisation/simulation, projets.

CC1 = 4 écrits d'une heure chacun = 60 %

CC2 = Comptes rendus de TP = 10 %

CC3 = Exposés = 10%

CC4 = Projets = 20%

Bibliographie

biblio spécifique encore à préciser.

Equipe pédagogique

Thomas Durt

Julien Fade

Miguel Alonso

Caroline Champenois (AMU)

Other stakeholders to be defined

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	50h
Nouvelles heures d'enseignement	Travaux Dirigés	24h
Nouvelles heures d'enseignement	Travaux Pratiques	10h
Nouvelles heures d'enseignement	Projets	10h
Nouvelles heures d'enseignement	Autres	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thomas Durt

thomas.durt@centrale-marseille.fr

Systèmes embarqués

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Electronique analogique et numérique

Objectifs d'apprentissage

CONTENU ET OBJECTIFS:

Ce module porte sur les principes des systèmes embarqués et les méthodes de conception, prototypage et réalisation de tels systèmes. Outres les aspects physiques, le module offre aux élèves un ensemble des outils de conception dont la maîtrise est indispensable pour le prototypage et la réalisation des systèmes embarqués dans un large éventail d'applications.

DÉBOUCHÉES ET PERSPECTIVES D'EMPLOI:

Les progrès considérables et constants de l'électronique en performances, flexibilité, programmabilité et réduction de coût, créent d'importantes opportunités d'innovation dans ce domaine. Dans le même temps, l'industrie a des difficultés à trouver des compétences dans ce domaine et fait face à des défis majeurs en matière de l'intégration des aspects logiciel (software) et matériel (hardware).

Les employeurs sont en particulier des entreprises qui développent des composants électroniques et des systèmes embarqués dans différents domaines.

Description du programme

Une nouvelle génération de systèmes riches en capteurs et massivement distribués est en train d'émerger, ce qui va avoir un impact économique et environnemental très important. On peut citer de nombreuses applications concernées, notamment des voitures autonomes, des drones aériens et sous-marins, des systèmes d'automatisation dans les usines, des environnements intelligents, des réseaux de capteurs, des sondes spatiales, etc. Dans la plupart de ces applications, on a besoin des systèmes intégrés reconfigurables qui fonctionneront de manière autonome pendant des années dans des environnements difficiles et incertains, atteignant des niveaux de compétences et de robustesse sans précédent. La conception et la réalisation de ces systèmes embarqués intelligents nécessite une révolution logicielle qui rassemble un ensemble varié de méthodes de calcul allant de l'intelligence artificielle, du génie logiciel, de la recherche opérationnelle et du contrôle.

Les matières abordées dans ce module sont:

* Principes des systèmes embarqués intelligents :

Contraintes en CPU, énergie, mémoire, I/O et coût; Capteurs et acquisition de données; Sécurité des systèmes embarqués, stratégies d'attaques ciblant les parties logicielles et matérielles; Connectivité des systèmes embarqués

* Conception et réalisation :

Conception modulaire et abstraction; Langage C; Systèmes de calcul numérique parallèle (CPU, GPU); Programmation en VHDL et prototypage par FPGA; Prototypage avec microcontrôleur, Raspberry, Arduino, ...; Interfaçage et bus électroniques, standards de transmission; Acquisition de données et conception avec Labview / Matlab

* Travaux Pratiques:

TPs programmation en C; TP programmation en VHDL avec les outils CAO associés (ModelSim, Quartus, etc.); configuration de FPGA avec des design-kits Altera/Xilinx; TP Programmation Python et commande d'un robot avec Raspberry Pi; TP programmation Arduino et Node MCU; TP programmation en Nodejs

* Mini-projets:

Exemples concrets d'application et configuration des cartes Arduino, Raspberry, ...

Compétences et connaissances scientifiques et techniques visées dans la discipline

Maîtrise de différentes technologies des systèmes embarqués; Programmation en langages C, VHDL; outils CAO ModelSim et Quartus; programmation Arduino et Node MCU

Modalité de contrôle des connaissances

Contrôle continu, travaux pratiques, mini-projets

Bibliographie

[1] J. K. Peckol, Embedded Systems: A Contemporary Design Tool, Wiley, 2019.

- [2] M. Wolf, Embedded System Interfacing: Design for the Internet-of-Things and Cyber-Physical Systems, Elsevier, 2019.
- [3] E. Grolleau et al., Introduction aux Systèmes Embarqués Temps Réel: Conception et Mise en Œuvre, Dunod, 2018.
- [4] D. Paret, H. Rebaine, Réseaux de Communication pour Systèmes Embarqués, Dunod, 2014.

Equipe pédagogique

Nicolas Bertaux

Ali Khalighi

Fabien Lemarchand

Julien Marot

Michel Moulin,

Conférenciers industriels.

Total des heures		110h
Cours Magistral	Cours Magistral	40h
Travaux Pratiques	Travaux Pratiques	40h
Travaux Dirigés	Travaux Dirigés	20h
Apprentissage en Automatique	Apprentissage en Autonomie	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Mohammad Ali Khalighi

■ ali.khalighi@centrale-marseille.fr

Technologies Spatiales

Fn bref

> Langue de cours: Français

Présentation

Objectifs d'apprentissage

La conception, la réalisation, la validation et l'exploitation d'instruments spatiaux, que ce soit pour l'Observation de la Terre ou les Sciences de l'Univers, requièrent la mise en œuvre de technologies et de techniques bien particulières, à toutes les étapes d'un projet spatial. Celles-ci permettent de réaliser des instruments non seulement adaptés à l'environnement sévère mais répondant également à l'exigence de fiabilité qui en découle.

Ces techniques spécifiques, ainsi que les technologies de pointes associées, seront présentées en prenant comme exemple la conception et la réalisation d'un instrument d'observation pour l'astrophysique, tout en présentant, quand cela est possible la déclinaison de celles-ci pour des missions d'observation de la Terre ou pour des domaines industriels autres.

Description du programme

Après une présentation du contexte et des bases de la préparation d'une mission spatiale, notamment en termes de Phasage, de Niveau de Maturité (TRL) et de Qualité ainsi que la déclinaison des contraintes spécifiques au spatial sur les techniques et technologies associées, le programme développé sera le suivant :

- * Ingénierie Système : présentation des aspects importants dans l'analyse et la conception d'un système opto-mécanique spatial, depuis l'établissement de spécifications jusqu'à l'établissement d'un budget d'erreur et l'estimation des performances
- * Techniques d'analyse spectrale : Ce module a pour but de faire découvrir les différentes techniques d'analyse spectrale utilisées en astrophysique, mais que l'on rencontre aussi pour certaines dans d'autres domaines y compris dans l'industrie.
- * Maitrise du front d'onde : présentation des différentes techniques permettant de contrôler et maintenir la qualité du front d'onde d'un télescope ou d'un instrument spatial (optique active/adaptative spatiale)
- * Opto-mécanique spatiale : conception d'un système opto-mécanique spatial, depuis sa définition, en passant par sa modélisation thermomécanique et l'insertion de systèmes d'actionnement et de mesure, jusqu'à la préparation des tests fonctionnels.

- * Assemblage, intégration, tests/validation : Ce module abordera la phase de qualification d'un instrument ou système spatial, notamment les différents tests en environnements (Vide, Thermique, Vibrations) réalisés au cours de l'intégration puis de la validation du système.
- * Gestion des données spatiales (nouveauté 2022, description à venir)

Compétences et connaissances scientifiques et techniques visées dans la discipline

Thème 2 : Systèmes complexes et Complexité

Les instruments spatiaux sont par nature des instruments extrêmement complexes par leur nature technique et par leur conception, intégration et validation. Ces cours permettront aux étudiants d'aborder cette complexité.

Thème 3: Programmes

Les missions spatiales sont conçues dans le cadre de programmes nationaux ou internationaux. Ces enseignements permettront d'en aborder les aspects scientifiques et techniques.

Modalité de contrôle des connaissances

Contrôle Continu

Bibliographie

Notes de cours et documents fournis par l'équipe enseignante.

Equipe pédagogique

- * Astronomes et Ingénieurs du Laboratoire d'Astrophysique de Marseille
- * Intervenants Industriels et ONERA

Total des heures 0h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laurent Gallais-During

■ laurent.gallais@centrale-marseille.fr

Projet PICSEL

Présentation

Description du programme

Travail en groupe (2 à 4) ayant pour objectif de confronter les élèves à un problème complexe portant sur les thématiques de PICSEL et nécessitant de mettre en œuvre les notions abordées en cours. Le projet est l'occasion d'approfondir les connaissances et compétences dans les domaines d'intérêt des élèves en développant leur autonomie et leur capacité d'autoformation

Modalité de contrôle des connaissances

Rapport / Soutenance / Evaluation tuteur

Total des heures100hNouvelles heures d'enseignementProjets100h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Laurent Gallais-During

■ laurent.gallais@centrale-marseille.fr

Matériaux et structures, fluides, mer (MECA)

	Nature	СМ	TD	TP	Crédits
Parcours FETES : Fluides : énergie, transports, environnement, santé	Module				
Temps 3	Module				
Méthodes numériques en mécanique	Module	10h	6h	8h	2
Méthodes expérimentales	Module	8h		16h	2
Energies nouvelles et renouvelables	Module	16h	8h		2
Dispersion de polluants	Module	16h	8h		2
	Nature	СМ	TD	TP	Crédits
Parcours Génie Mer (GM)	Module				
Temps 3	Module				
Méthodes numériques en mécanique	Module	10h	6h	8h	2
Méthodes expérimentales	Module	8h		16h	2
Spécialité éolien	Module				4
Spécialité naval	Module				4
	Nature	СМ	TD	TP	Crédits
Parcours Modélisation Mécanique des Matériaux et des Structures (M3S)	Module				
Temps 3	Module				
Méthodes numériques en mécanique	Module	10h	6h	8h	2
Dynamique des structures	Module	16h	2h	6h	2
Comportement des matériaux - Grandes déformations	Module	12h	8h	4h	2
Outils logiciels en mécanique - Avancé	Module	4h		20h	2
	Nature	СМ	TD	TP	Crédits
	Module				5

Parcours FETES : Fluides : énergie, transports, environnement, santé

	Nature	СМ	ΙD	IP	Credits
Temps 3	Module				
Méthodes numériques en mécanique	Module	10h	6h	8h	2
Méthodes expérimentales	Module	8h		16h	2
Energies nouvelles et renouvelables	Module	16h	8h		2
Dispersion de polluants	Module	16h	8h		2

Temps 3

	Nature	CM	TD	TP	Crédits
Méthodes numériques en mécanique	Module	10h	6h	8h	2
	Nature	СМ	TD	TP	Crédits
Méthodes expérimentales	Module	8h		16h	2
	Nature	СМ	TD	TP	Crédits
Energies nouvelles et renouvelables	Module	16h	8h		2
	Nature	СМ	TD	TP	Crédits
Dispersion de polluants	Module	16h	8h		2

Méthodes numériques en mécanique

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- Cours d'analyse numérique de niveau Licence (1ère année ingénieur)
- Cours de 🗹 mécanique de 1ère année.

Objectifs d'apprentissage

- Sensibiliser aux enjeux de la simulation numérique contemporaine aussi bien en termes de moyens de calcul que des spécificités des modèles d'équations rencontrés en fluides, solides ou acoustiques.
- Faire le lien avec des notions générales et de bases vues en mathématiques d'un point de vue théorique et les appliquer dans le contexte métier de la mécanique.
- · Apporter une vision globale des méthodes numériques utilisées en mécanique (solides, fluides) :
- -- e#tre capable de paramétrer basiquement un code de calcul basé sur des méthodes de discrétisation classiques (éléments finis, volumes finis)
- -- e#tre capable d'appréhender les méthodes spécifiques rencontrées dans les codes de calcul pour paramétrage en fluide et solides.

Description du programme

On insistera sur les spécificités des problèmes rencontrés en mécanique des solides, en mécanique des fluides et en acoustique, et on justifiera les différentes approches utilisées. Les particularités liées aux simulations numériques de problèmes non linéaires seront abordées. On mettra en évidence les difficultés liées au paramétrage d'outils de calcul industriels. Huit heures seront dédiées à une initiation à un logiciel multiphysique.

- Considérations générales
- -- Tendances actuelles sur les moyens de calcul, vers le massivement parallèle
- -- Principes généraux des schémas de discrétisation en temps et espaces, convergence-stabilité-consistance, schémas implicites et explicites
- -- Généralités sur différences finies, éléments finis, méthodes spectrales, volumes finis, éléments de bord
- Méthodes numériques en mécanique : une introduction à la CFD
- -- Techniques volumes finis et technique éléments finis en fluide
- -- Le problème de l'incompressibilité en fluides
- -- Application à la résolution des éguations de Navier-Stokes pour un fluide incompressible
- -- Méthodes stabilisées
- -- Simulation de la turbulence en fluide
- -- Vers une utilisation éclairée des codes de calcul industriels en fluide : le cas Ansys-Fluent
- · Méthodes numériques en mécanique : une introduction au calcul des solides et des structures
- -- Code éléments finis, techniques éléments finis, cadre algorithmique
- -- Au-delà de l'élasticité : schémas en temps, problèmes non linéaires (pas de temps, itérations) approche lagrangienne totale
- Méthodes numériques en mécanique : une introduction à l'acoustique
- -- Éléments finis en acoustique
- -- Méthodes aux intégrales de bord
- De la CAO au calcul : vers une approche intégrée de la conception à la simulation ; application de la méthode isogéométrique aux fluides et solides
- Applications pratiques sous COMSOL Multiphysics: travaux pratiques sur machines (8h)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Capacité à tenir compte des problèmes physiques de base pour utiliser des codes de calcul industriel
- Capacité à construire des solutions logicielles nouvelles pour simuler des phénomènes complexes non présents dans des outils de calcul industriel en standard
- · Capacité à appréhender une situation complexe à physiques multiples pour proposer des solutions logicielles performantes
- · Capacité à la prise de recul par rapport à une utilisation raisonnée des outils de calcul

Modalité de contrôle des connaissances

- CC1: Compte-rendu des TP (50%)
- CC 2 : Travail en autonomie sur un sujet donné (50%)

Bibliographie

- Support de cours en PDF
- T.J.R. Hughes, The finite element method, éd. Prentice-Hall, 1987
- · A. Ibrahimbegovic, Nonlinear solid mechanics, Hermes, 2009
- J. Wendt, Computational Fluid Dynamics, Springer, 2009

Equipe pédagogique

- Dominique Eyheramendy
- · Vacataires pour les TPs

Total des heures		24h
CM	Cours Magistral	10h
TD	Travaux Dirigés	6h
TP	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Dominique Eyheramendy

■ dominique.eyheramendy@centrale-marseille.fr

Méthodes expérimentales

Fn bref

> Langue de cours: Français

Présentation

Prérequis

non

Objectifs d'apprentissage

L'objectif de ce module sur les méthodes expérimentales est double :

D'une part, donner aux étudiants une vue d'ensemble des problématiques liées à la métrologie dans le contexte de la mécanique (c'est-à-dire des mesures spécifiques de contraintes, de vitesse, de température, etc.). Ceci est fait dans le cadre de 2 cours de 4h : l'un centré sur les techniques de mesure, l'autre sur le traitement des données et du signal.

D'autre part, par l'intermédiaire de 4 séances de travaux pratiques pour découvrir et étudier, théoriquement et expérimentalement des phénomènes physiques originaux : instabilités de jet, propagation d'ondes de surface, couche limite turbulente, rendement d'une roue hydraulique.

Les objectifs généraux de ces TP sont :

- * Connaître les principales techniques de mesure en mécanique
- * Connaitre les principales sources d'erreur métrologique
- * Savoir interpréter des expériences

Description du programme

Contenu du cours :

- * Aspects normatifs d'une mesure.
- * Caractéristiques et performances d'une chaine de mesure.
- * Acquisition et traitement des données numériques.
- * Mesures de déformation dans les solides (jauges de déformation, stéréo corrélation).
- * Mesures de contraintes dans les fluides (mesures de pression, de frottement).
- * Mesure de vitesse dans les fluides (sondes de pression, anémométrie fil/film chaud, vélocimétrie Laser Doppler, vélocimétrie par images de particules).
- * Mesure de température (pour les fluides et les solides), sondes physiques (thermocouple, Pt100, etc.), thermographie, fluorescence induite par Laser.
- * Techniques de traitement appliquées à des mesures d'ondes de surface dans un bassin.
- * Filtrage.
- * Décomposition modale.
- * Analyse temps-fréquence.

Contenu des travaux pratiques:

- * Étude de l'instabilité de Plateau-Rayleigh (formation de gouttes dans un jet liquide).
- Étude, en canal hydraulique, du run-up d'un soliton sur un mur vertical.
- * Étude d'une couche limite turbulente par anémométrie à fil chaud.
- * Étude des performances d'une roue hydraulique.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir analyser un problème de mesure expérimentale.
- Savoir déterminer les caractéristiques ad hoc du système de mesure employé.
- * Connaître les principales techniques de mesure usitées en mécanique et en maîtriser les avantages/inconvénients.
- * Connaître les principales techniques de traitement des données.

Modalité de contrôle des connaissances

TP: restitution de comptes-rendus, 100%

Bibliographie

- 1. Rathakrishnan, E. (2020). Instrumentation, Measurements, and Experiments in Fluids (2nd ed.). CRC Press.
- 2. Kutz, M. (2015). Mechanical Engineers' Handbook (4th ed.). Wiley.

Equipe pédagogique

Lili Kimmoun (ECM)

Yannick Knapp (Université d'Avignon et Pays du Vaucluse)

Cédric Maury (ECM)

Daniel Mazzoni (ECM)

Objectif de Développement Durable

Recours aux énergies renouvelables

Villes et communautés durables

Total des heures 24h

Nouvelles heures d'enseignement Cours Magistral 8h

Nouvelles heures d'enseignement Travaux Pratiques 16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Olivier Boiron

■ olivier.boiron@centrale-marseille.fr

Energies nouvelles et renouvelables

Fn bref

> Langue de cours: Français

Présentation

Prérequis

non

Objectifs d'apprentissage

L'objectif de ce module sur les énergies nouvelles et renouvelables est de proposer un survol des principaux procèdes envisagés pour produire de l'énergie dans le futur, en se limitant aux procédés pour lesquels la mécanique des fluides joue un rôle prépondérant, comme pour les éoliennes ou les hydroliennes. Cette partie de cours, moins détaillée que les parties correspondantes du S8 Énergie durable de l'École Centrale de Marseille, est suffisante pour les élèves qui n'ont pas pour objectif de se spécialiser dans ce domaine et surtout pour ceux, les plus nombreux, qui ont effectué leur S8 en mobilité internationale.

Description du programme

Les enseignements de ce module se répartissent en quatre séances de quatre heures chacune, qui sont centrées sur, respectivement, les aspects socio-économiques et les enjeux liés notamment au réchauffement climatique, les éoliennes, les énergies marines renouvelables, ainsi que les piles à combustible et la filière hydrogène. Ainsi qu'en deux autres séances, de quatre heures également, sur la modélisation par système et, plus particulièrement la méthode Bond Graph, qui est très couramment utilisée pour analyser et optimiser le fonctionnement de systèmes complexes, tels ceux rencontrés dans le domaine des énergies renouvelables. Des cas concrets sont traités en exemples

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Innovation scientifique et technique.
- * Maîtrise de la complexité et des systèmes :
 - * Savoir analyser un problème lié à l'énergie et savoir proposer des solutions adaptées en termes d'énergies renouvelables.
 - * Savoir interpréter des résultats d'expérience en vue d'optimiser un choix ou un fonctionnement.
- * Direction de programme:
 - * Savoir piloter la mise en place d'un programme lié aux énergies renouvelables (choix de la solution technique/financière optimale), ainsi que la gestion de sa mise œuvre (construction, suivi technique, gestion des personnes impliquées...)

Modalité de contrôle des connaissances

DS: devoir surveillé, 50%

Projet: restitution d'un rapport, 50%

Bibliographie

- 1. Dauphin-Tanguy, G. (2000). Les bond graphs. Hermes Science Publications.
- 2. Gouriérès, L. D. (2008). Les éoliennes: Théorie, conception et calcul pratique. MOULIN CADIOU.
- 3. Sarlos, G., Haldi, P. A. & Verstraete, P. (2003). Systèmes énergétiques : offre et demande d'énergie : méthodes d'analyse. Presses polytechniques et universitaires romandes.

Equipe pédagogique

Fabien Anselmet (ECM)

Olivier Boiron (ECM)

Lili Kimmoun (ECM)

Intervenant extérieur du ministère de l'Environnement

Objectif de Développement Durable

Recours aux énergies renouvelables

Villes et communautés durables

Total des heures24hNouvelles heures d'enseignementCours Magistral16hNouvelles heures d'enseignementTravaux Dirigés8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Olivier Boiron

■ olivier.boiron@centrale-marseille.fr

Dispersion de polluants

Fn bref

> Langue de cours: Français

Présentation

Objectifs d'apprentissage

Ce cours sur la pollution a pour objectif de présenter les aspects principaux des phénomènes complexes qui sont associés au terme générique de "pollution". Ce cours de 24 heures ne peut bien-sûr pas être exhaustif. Il sera organisé en 3 parties de 8 heures chacune, qui aborderont tout d'abord les aspects de dispersion de polluants (petite et méso-échelle) et de dépôt de particules sèches, en établissant l'importance de la notion de panache gaussien, puis les problèmes liés à la circulation atmosphérique à grande échelle en incluant les phénomènes complexes liés à la chimie des polluants atmosphériques, et, finalement, les problèmes de pollution liés aux microplastiques dans les océans.

Description du programme

Pollution atmosphérique : dispersion – dépôt.

Cette partie du cours est organisée de la façon suivante :

- * Étude des modèles de dispersions simples (situation idéalisée) et des panaches gaussiens
- * Modifications/adaptations de ces modèles simples pour les situations réelles (effets de relief, de stratification thermique notamment par forte stabilité, ...)
- * Modèles de dépôt d'aérosols sur les couverts (végétaux ou autres)
- * TD/TP avec compte rendu pour analyser des données de traçage dans un canal d'adduction d'eau et en déduire les coefficients de dispersion effective

Pollution marine : ce cours propose une introduction à la pollution plastique océanique. Il a pour objectif de donner aux étudiants une vue globale de ce qui est actuellement connu sur le transport de ces polluants ainsi que sur les questions encore ouvertes à ce jour. Il s'organise en 4 parties :

* Introduction sur cette thématique avec présentation des enjeux associés

- * Modélisation du transport vertical
- * Modélisation du transport horizontal
- Écoulements côtiers

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Donner des clés pour comprendre les mécanismes physiques qui régissent la dispersion d'un panache de pollution, la dynamique, les interactions avec le relief naturel et la météo (C2)
- * Transmettre des notions permettant de faire les meilleurs choix en termes d'outils à utiliser pour des projets ou études, d'émettre des spécifications, d'interpréter des résultats de façon pertinente (C3)
- * Avoir un niveau de mai#trise suffisant pour proposer, susciter ou discuter d'innovations en lien avec ces domaines (C1)

Modalité de contrôle des connaissances

CC: travail surveillé en groupe, 50%

Projet: restitution d'un rapport, 50%

Bibliographie

Bougeault, R. Sadourny, Dynamique de l'océan et de l'atmosphère, Éditions de l'École Polytechnique, 2001.

Equipe pédagogique

Fabien Anselmet (ECM)

Olivier Boiron (ECM)

Marie Poulain-Zarcos (LMA)

Objectif de Développement Durable

Villes et communautés durables

Lutte contre le changement climatique

Total des heures 24h

Nouvelles heures d'enseignement Cours Magistral 16h

Nouvelles heures d'enseignement Travaux Dirigés 8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Olivier Boiron

☑ olivier.boiron@centrale-marseille.fr

Parcours Génie Mer (GM)

	Nature	СМ	TD	TP	Crédits
Temps 3	Module				
Méthodes numériques en mécanique	Module	10h	6h	8h	2
Méthodes expérimentales	Module	8h		16h	2
Spécialité éolien	Module				4
Spécialité naval	Module				4

Temps 3

	Nature	CM	TD	TP	Crédits
Méthodes numériques en mécanique	Module	10h	6h	8h	2
	Nature	СМ	TD	TP	Crédits
Méthodes expérimentales	Module	8h		16h	2
	Nature	СМ	TD	TP	Crédits
Spécialité éolien	Module				4
	Nature	СМ	TD	TP	Crédits
Spécialité naval	Module				4

Spécialité éolien

Infos pratiques

Nom responsable UE

Responsable pédagogique

Lili Kimmoun

☑ lili.kimmoun@centrale-marseille.fr

Spécialité naval

Infos pratiques

Nom responsable UE

Responsable pédagogique

Julien Touboul

■ julien.touboul@centrale-marseille.fr

Parcours Modélisation Mécanique des Matériaux et des Structures (M3S)

	Nature	СМ	ΙD	IP	Credits
Temps 3	Module				
Méthodes numériques en mécanique	Module	10h	6h	8h	2
Dynamique des structures	Module	16h	2h	6h	2
Comportement des matériaux - Grandes déformations	Module	12h	8h	4h	2
Outils logiciels en mécanique - Avancé	Module	4h		20h	2

Temps 3

	Nature	СМ	TD	TP	Crédits
Méthodes numériques en mécanique	Module	10h	6h	8h	2
	Nature	СМ	TD	TP	Crédits
Dynamique des structures	Module	16h	2h	6h	2
	Nature	СМ	TD	TP	Crédits
Comportement des matériaux - Grandes déformations	Module	12h	8h	4h	2
	Nature	СМ	TD	TP	Crédits
Outils logiciels en mécanique - Avancé	Module	4h		20h	2

Dynamique des structures

Fn bref

> Langue de cours: Français

Présentation

Prérequis

- MMC, élasticité linéaire (UE 1A/Mécanique)
- Si possible, initiation à la dynamique (S7/MECAPHY ou S8 DMC)

Objectifs d'apprentissage

Acquérir les notions fondamentales autour des oscillations dans les milieux continus (solides et fluides) et les utiliser pour résoudre des problèmes industriels :

- · Savoir déterminer et exploiter les modes propres d'un milieu continu linéarisé
- Savoir calculer des niveaux vibratoires pour des structures de grandes tailles
- · Connaître les principaux modes d'instabilités dynamiques

Description du programme

• Modes propres : définition et application aux cas des solides élastiques linéaires, modes acoustiques, modes de ballottement des fluides

- Réponses forcées : introduction d'amortissement, calcul de réponses forcées, réduction de modèle par troncature et sousstructuration
- Quelques problèmes pratiques : vibrations des rotors, absorbeurs dynamiques
- Instabilités dynamiques induites par les écoulements ou le frottement : présentation des mécanismes de divergence, de flottement, de galop
- · Vibrations non-linéaires : limites de la linéarisation, dépendance fréquence-amplitude, stabilité

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Savoir analyser des structures complexes
- · Maîtriser les méthodes de dimensionnement en dynamique linéaire
- · Savoir anticiper des phénomènes complexes d'instabilité
- Proposer des représentations réduites pour minimiser les coûts de calcul

Modalité de contrôle des connaissances

- DS: évaluation écrite de 2h (80%)
- CC: compte-rendu de TP (20%)

Bibliographie

- · Polycopié de cours en PDF
- M. Géradin et D. Rixen, Théorie des Vibrations, Application à la dynamique des structures, Masson, 1993
- M. Lalanne et G. Ferraris, Rotordynamics Prediction in Engineering. 2nd ed. Wiley, 1998

Equipe pédagogique

- Bruno Cochelin
- Emmanuelle Sarrouy

Total des heures		24h
CM	Cours Magistral	16h
TD	Travaux Dirigés	2h
TP	Travaux Pratiques	6h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

■ emmanuelle.sarrouy@centrale-marseille.fr

Comportement des matériaux - Grandes déformations

Fn bref

> Langue de cours: Français

Présentation

Prérequis

MMC, algèbre et analyse tensorielles (UE 1A/Mécanique)

Objectifs d'apprentissage

Savoir traiter des problèmes en grandes déformations :

- Maîtriser les notions de configuration et de mesure de contraintes et de déformations vues en première année adaptées au cadre des grandes déformations
- · Savoir formuler des lois de comportements en grandes déformations
- Savoir mettre en œuvre ces notions dans le cadre d'un logiciel de calcul

Description du programme

- · Définition de la cinématique et de la sthénique en grandes déformations
- · Équations d'équilibre
- · Réécriture du cadre thermodynamique dans les différentes configurations

- · Élasticité non linéaire
- · Modèles hyperélastiques, cas particuliers de l'isotropie et de l'incompressibilité
- Quelques exemples de modèles dissipatifs, notions d'états intermédiaires et application aux élastomères

Compétences et connaissances scientifiques et techniques visées dans la discipline

- Savoir identifier le modèle de comportement approprié au problème traité
- · Modéliser des problèmes complexes aux modèles de comportement évolués
- · Mener et analyser des calculs en grandes déformations

Modalité de contrôle des connaissances

DS: évaluation écrite de 2h (100%)

Bibliographie

- · Polycopié et support de cours en PDF
- J. Garrigues, Cinématique des milieux continus (Z en ligne)
- · G. Holzapffel, Nonlinear solid mechanics, 2000
- · C. Felippa, Nonlinear Finite Elements (en ligne)

Equipe pédagogique

Stéphane Lejeunes (Ingénieur de Recherche CNRS, Laboratoire de Mécanique et d'Acoustique)

Total des heures		24h
CM	Cours Magistral	12h
TD	Travaux Dirigés	8h
TP	Travaux Pratiques	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

■ emmanuelle.sarrouy@centrale-marseille.fr

Outils logiciels en mécanique - Avancé

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Bases théoriques et logicielles de la méthode éléments finis (UE Outils logiciels en mécanique - Bases)

Objectifs d'apprentissage

Cette UE complète l'UE 🗹 Outils logiciels en mécanique - Bases. Son objectif est d'amener l'étudiant à maîtriser la méthode des éléments-finis pour résoudre la plupart des problèmes mécaniques qu'il pourra rencontrer par la suite :

- Savoir choisir la modélisation appropriée (3D/éléments structuraux, représentation des contacts, comportements des matériaux, ...)
- · Savoir la mettre en pratique dans un cadre logiciel
- · Maîtriser les méthodes de résolution d'un problème non linéaire dans ce cadre
- · Connaître les possibilités et limites de la simulation numérique et de ses modèles
- · Savoir analyser, critiquer et présenter un résultat de calcul

Description du programme

• Gestion avancée des contacts (avec frottement, prise/perte de contact, ...)

- Mise en œuvre de la plasticité, en lien avec le cours 🗹 de plasticité
- Mise en œuvre des grande déformations, en lien avec le cours sur les 🗹 grandes déformations
- Mini-Projet (2 séances avec enseignant et 2 séances en autonomie)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- · Savoir formuler des problèmes complexes dans un cadre logiciel
- Savoir analyser, critiquer et présenter les résultats d'un calcul
- Savoir formuler des requêtes de développement spécifique pour un logiciel
- · Savoir choisir le logiciel le plus adapté aux problèmes traités

Modalité de contrôle des connaissances

- CC1 : CR de mini-projet (55 %)
- CC2: CR de TP (45%)

Bibliographie

- · Support de cours
- M. Bonnet et A. Frangi, Analyse des solides déformables par la méthode des éléments finis, Les éditions de l'École Polytechnique, 2006
- T.J. Hughes, The finite element method: linear static and dynamic finite element analysis, Dover, 2012

Equipe pédagogique

· Stéphane Bourgeois

- Stéphane Lejeunes (ingénieur de recherche CNRS, Laboratoire de mécanique et d'acoustique)
- Iulian Rosu (ingénieur de recherche CNRS, Laboratoire de mécanique et d'acoustique)
- Emmanuelle Sarrouy

Total des heures		28h
CM	Cours Magistral	4h
TP	Travaux Pratiques	20h
AA (projet)	Apprentissage en Autonomie	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

■ emmanuelle.sarrouy@centrale-marseille.fr

Projet MECA

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Non

Objectifs d'apprentissage

- * Savoir aborder un problème réel et ses différentes contraintes
- * Mettre en œuvre les différentes connaissances et compétences apprises au fil de la formation, qu'elles soient théoriques techniques ou organisationnelles pour les appliquer à la résolution d'un problème concret
- * Savoir compléter ses connaissances et compétences selon les besoins du projet
- * Travailler en équipe et en interface avec un mandataire
- Structurer son travail dans le temps
- * Savoir rendre compte de ses travaux

Description du programme

- * Différents sujets sont proposés en début d'année (mi-septembre) et traités chacun par un groupe de deux à trois étudiants. Ces sujets sont des points d'intérêt pour le monde de la recherche académique et/ou industrielle.
- * L'encadrement est assuré par un ou deux enseignants ou collaborateurs extérieurs.
- * Une demi-journée par semaine environ y est dédiée.
- * Le travail est réalisé principalement en autonomie, et les étudiants ont à leur charge de contacter des personnes-ressources pour les aider à traiter les points durs.
- * Le projet se conclut par une soutenance et la production d'un rapport.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir aborder et décomposer un problème complexe
- Savoir proposer des solutions innovantes
- Savoir structurer son travail dans le temps
- Savoir rendre compte de ses travaux
- * Savoir trouver une organisation au sein d'un groupe et en interface avec des collaborateurs extérieurs

Modalité de contrôle des connaissances

CC1: soutenance, 25%

CC2: soutenance, 25%

CC3: restitution d'un apport, 50%

Bibliographie

Dépendante du sujet

Equipe pédagogique

Enseignants de mécanique (ECM)

Encadrants extérieurs du milieu industriel ou de la recherche universitaire

Objectif de Développement Durable

Recours aux énergies renouvelables

Consommation et production responsables

Bâtir une infrastructure résiliente

Lutte contre le changement climatique

Villes et communautés durables

Total des heures 100h

Nouvelles heures d'enseignement Projets 100h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Emmanuelle Sarrouy

■ emmanuelle.sarrouy@centrale-marseille.fr

Données et Décisions Economiques et Financières (DDEFI)

	Nature	СМ	TD	TP	Credits
Temps 3 : Une spécialité au choix	Module				
Parcours Données et décision	Module				
Spécialité : Actuariat	Module	81h			8
Spécialité : Analyse et données	Module	80h			8
Parcours Finance	Module				
Spécialité : Mathématiques financières	Module	81h			8
Spécialité : Finance d'entreprise	Module	70h			8
	Nature	СМ	TD	TP	Crédits
Projet DDEFI	Module				5

Temps 3 : Une spécialité au choix

	Nature	СМ	TD	TP	Crédits
Parcours Données et décision	Module				
Spécialité : Actuariat	Module	81h			8
Spécialité : Analyse et données	Module	80h			8
	Nature	CM	TD	TP	Crédits
Parcours Finance	Nature Module	CM	TD	TP	Crédits
Parcours Finance Spécialité : Mathématiques financières		CM 81h	TD	TP	Crédits 8

Parcours Données et décision

	Nature	СМ	TD	TP	Crédits	
Spécialité : Actuariat	Module	81h			8	
Spécialité : Analyse et données	Module	80h			8	

Spécialité: Actuariat

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

UE Données et décisions de l'option DDEFi ainsi que ses propres pré-requis

Objectifs d'apprentissage

- * Savoir comment les comportement individuels sont agrégés sur le marché de l'assurance et comment les prix se forment.
- * Connaître les principes gouvernant la tarification des produits d'assurance et savoir les appliquer à des produits simples.
- * Comprendre le besoin de provisionner en assurance et connaître les principales méthodes servant à calculer des provisions.
- * Savoir choisir un modèle de tarification en fonction des risques et des problématiques d'un assureur.
- * Connaître la réglementation actuelle et comprendre son impact sur la tarification et le provisionnement.
- * Savoir évaluer un portefeuille d'assurance.
- * Connaître les principaux modèles des sciences de données et leur utilité.

Description du programme

This unit is composed of three courses: Economics of insurance, Actuarial science 1, Actuarial science 2, of 24 hours each, and is complemented by the third part of the data science projects (9 hours course and 12 hours project) devoted to models and their validation.

Economics of insurance

- 1. Introduction: Risk attitude and preferences
- 2. The single risk model

- 3. Product differentiation
- 4. Unobservable criteria
- 5. Moral hazard
- 6. Extensions and exercises
- 7. Topic: Duration models and life tables

Actuarial science 1

- 1. Introduction to actuarial science
 - i. Life insurance model: fair premiums and prudent pricing
 - ii. Non-life specificities: provisioning and variability of non-life risks
- 2. Life Insurance, saving products, and accounting
 - i. Introduction on Mathematical Reserves
 - ii. Saving contracts and performance distribution mechanisms
 - iii. Performance indicators for an insurance company
- 3. Non-Life Insurance
 - i. Mechanisms of Non-Life Insurance
 - ii. Loss experience and reserving
 - iii. Introduction to Non-Life Reinsurance

Actuarial science 2

- 1. Valuing an insurance portfolio
- 2. Asset-liability management in insurance
- 3. Accounting and financial communication of insurance companies
- 4. The current regulation: IFRS17
- 5. CAT risk and CAT reinsurance
- 6. Focus on long-term care

Data science projects: models and their validation

- 1. Projects and models
 - i. The Bias-Variance tradeoff
 - ii. Feature Selection
 - iii. Feature Engineering
 - iv. Defining a metric
- 2. Models and applications
 - i. Regressions (linear, polynomial, penalized et logistic)
 - ii. Decision trees (random forest and gradient boosting)
- 3. Focus on Natural Language Processing (NLP)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Comprendre le fonctionnement du marché de l'assurance et notamment les comportements de demande.
- * Comprendre l'impact des asymétries d'information sur le marché de l'assurance, et les possibilités de les prendre en compte.
- * Comprendre les principes de valeur actuarielle, de primes pures et de provision.
- * Connaître les modèles permettant l'estimation des provisions.
- * Savoir mesurer la profitabilité d'un produit et d'un portefeuille d'assurance.
- * Connaître le contexte réglementaire et son impact sur le fonctionnement d'une compagnie.
- * Savoir utiliser les modèles issus des sciences de données dans un contexte professionnel.

Modalité de contrôle des connaissances

- * Examen écrit (Economics of insurance): 25%
- * Projet (Actuarial science 1): 25%
- * Examen écrit (Actuarial science 2): 25%
- * Projet (Data science projects): 25%

Bibliographie

Economics of insurance

- * Picard, Economic Analysis of Insurance Fraud. Handbook of Insurance.
- * Schlessinger, The Theory of Insurance Demand. Handbook of Insurance.

Actuarial science 1 & 2

- * Charpentier, Computational Actuarial Science with R,
- * Tosetti, Weiss and Poncelin, Les outils de l'actuariat vie

Data science projects

- * Zeng, A and Casari, A. Feature Engineering for Machine Learning. O'Reilly Media.
- * Müller, A. and Guido, S. Introduction to Machine Learning with Python. O'Reilly Media.

Equipe pédagogique

- * Economics of insurance: Hajare El Hadri (Centrale Marseille), Sofia Ruis (Aix-Marseille Université)
- * Actuarial science 1: Mitra Fouladirad (Centrale Marseille), Xavier Guerrault (AXA), Renaud Mouyrin (AXA), Matthias Servel (AXA)

- * Actuarial science 2 : Corinne Cherki (AXA), Alban Davand (AXA), Carelle Merlo (AXA), Emmanuelle Mimart (AXA), Sofiane Ournidi (AXA), Yannick Ropert (AXA)
- Data science projects:
 Alexandre Chirié (Mantiks),

Maximilien Defourné (Mantiks)

Objectif de Développement Durable

Accès à la santé

Éradication de la pauvreté

Total des heuresCoursCours Magistral81hProjetProjets19h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

renaud.bourles@centrale-marseille.fr

Spécialité: Analyse et données

Fn bref

> Langue de cours: Français

Présentation

Prérequis

UE Données et décisions de l'option DDEFi ainsi que ses propres pré-requis

Objectifs d'apprentissage

- * Savoir utiliser les données dans une approche stratégique
- * Savoir présenter un modèle, ses résultats et ses perspectives
- * Appréhender la pertinence de données pour répondre à un problème spéficique
- * Savoir combiner des données et des modèles pour prendre des décisions de tarification
- * Comprendre l'importance des choix méthodologiques dans la construction d'indicateurs

Description du programme

This unit is composed of three courses: Quantitative marketing, Data and macroeconomics, Applied data science, of 24 hours each, and is complemented by the third part of the data science projects (9 hours course and 12 hours project) devoted to models and their validation

Quantitative marketing

- 1. Data processing
 - i. Data: a matter of representation
 - ii. Data in business
 - iii. From segmentation to dynamic targeting

- 2. Marketing from a Data Scientist point of view
 - i. Context: the data world
 - ii. Scoring
 - iii. Statistics
 - iv. Correlations
 - v. Automatic learning
 - vi. Supervised classification
 - vii.Perspectives

Data and public policies

This course aims at giving a broad view of macroeconomic data. It is structured around three questions:

- 1. Can we measure everything?
- 2. Can we sum everything?
- 3. Can we compare everything?

These questions will allow to tackle multiple sources for macroeconomic data, their methodology, their limits, and to discuss their common applications. At the end of the course, students should have acquired enough hindsight to use pertinent macroeconomic data to answer a practical question.

Applied data science

- 1. Introduction to prescriptive analytics
- 2. Interpretability and maching learning
- 3. Application to revenue management
- 4. Application to predictive maintenance

Data science projects: models and their validation

- 1. Projects and models
 - i. The Bias-Variance tradeoff
 - ii. Feature Selection
 - iii. Feature Engineering
 - iv. Defining a metric
- 2. Models and applications
 - i. Regressions (linear, polynomial, penalized and logistic)
 - ii. Decision trees (random forest and gradient boosting)
- 3. Focus on Natural Language Processing (NLP)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir comment les données et le modèles peuvent être utilisé dans des cas pratiques allant du marketing au transport.
- * Savoir comment les statistiques publiques sont construites et utilisées.

Modalité de contrôle des connaissances

- * Projet et présentation (Quantitative marketing): 25%
- * Projet (Data and macroeconomics): 25%
- * Projet (Applied data science): 25%
- * Projet et présentation (Data science projects): 25%

Bibliographie

Quantitative marketing

* Abiteboul, S., « Sciences des données : de la logique du premier ordre à la Toile », Leçon inaugurale du Collège de France

Data and macroeconomics

- * https://ec.europa.eu/eurostat/data/database
- * L https://datagora.fr/

Applied data science

* Carter, M., Price, C. and Rabadi, G. "Operations Research: A Practical Introduction", Advances in Applied Mathematics

Data science projects

- * Zeng, A and Casari, A. Feature Engineering for Machine Learning. O'Reilly Media.
- * Müller, A. and Guido, S. Introduction to Machine Learning with Python. O'Reilly Media.

Equipe pédagogique

- * Quantitative Marketing: Vincent Archer (Locala), Thibault Camper (Locala)
- * Data and macroeconomics: Aurélien Poissonnier (Ministère de l'Intérieur)
- * Applied data science: Julien Bruno (Air France), Nathan Rouff (Ekimetrics), Teresa Pi Torras (Air France)

* Data science projects: Alexandre Chirié (Mantiks) et Maxilimilen Défourné (Mantiks)

Objectif de Développement Durable

Partenariats pour la réalisation des objectifs

Réduction des inégalités

Villes et communautés durables

Total des heuresCoursCours Magistral80hProjetProjets20h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

renaud.bourles@centrale-marseille.fr

Parcours Finance

	Nature	СМ	TD	TP	Crédits	
Spécialité : Mathématiques financières	Module	81h			8	
Spécialité : Finance d'entreprise	Module	70h			8	

Spécialité: Mathématiques financières

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

- * UE Finance de l'option DDEFi
- * Probabilités niveau Master 1 : théorie des probabilités (contenu de l'UE MAT-1A et contenu du cours Probabilités et statistique de l'Approfondissement S7 MIE), il est aussi fortement recommandé d'avoir suivi un cours traitant des processus stochastiques en temps discret ou en temps continu (par exemple électif S7 Introduction aux processus stochastiques).

Objectifs d'apprentissage

- * Appliquer le calcul stochastique pour évaluer le prix de produits financiers tels que les options.
- * Connaître les modèles standards utilisés en mathématiques financières.
- * Connaître les principaux modèles des sciences de données et leur utilité.

Description du programme

This course unit consists of three courses: Stochastic calculus, Interest rate models, and Volatility modeling, of 24h each and is complemented by the third part of the data science projects (9 hours course and 12 hours project) devoted to models and their validation.

Stochastic calculus

- 1. Gaussian variable and stochastic processes
- 2. Brownian motions
- 3. Stochastic integration and semi-martingales

- 4. Stochastic differential equations
- 5. Parabolic partial differential equations and semigroups
- 6. Measure change and Girsanov theoremIntroduction to financial mathematics

Interest rate models

- 1. A Mathematical Toolkit
- 2. Interest rates, swaps and options
- 3. One-factor Short-Rates Models
- 4. Two-factor Short-Rates Models
- 5. The Health-Jarrow-Morton (HJM) Model
- 6. The change of numeraire
- 7. Derivatives Pricing under the Libor Market Model

Volatility models

- 1. Elementary financial mathematics notions
- 2. PDE: Black Scholes and risk neutral measure
- 3. Dupire's local volatility: advantages and drawbacks
- 4. Stochastic volatility (Heston and SABR)
- 5. Tutorial: discretization of the Heston's model

Data science projects: models and their validation

- 1. Projects and models
 - i. The Bias-Variance tradeoff
 - ii. Feature Selection
 - iii. Feature Engineering
 - iv. Defining a metric
- 2. Models and applications
 - i. Regressions (linear, polynomial, penalized et logistic)
 - ii. Decision trees (random forest and gradient boosting)
- 3. Focus on Natural Language Processing (NLP)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Comprendre le calcul stochastique et savoir appliquer ses principaux résultats.
- * Savoir appliquer les méthodes stochastiques pour évaluer le prix de produits financiers.

- * Comprendre les conditions mathématiques sous lesquelles les modèles classiques de mathématiques financières sont valables.
- * Savoir et connaître la validité et les limites des modèles classiques de mathématiques financières.
- * Comprendre l'impact de la volatilité sur les gains et pertes d'une stratégie de couverture.
- * Savoir comment utiliser des méthodes numériques pour évaluer le prix de produits financiers.
- * Savoir utiliser les modèles issus des sciences de données dans un contexte professionnel.

Modalité de contrôle des connaissances

- * Interrogation écrite (Stochastic calculus): 25%
- * Projet (Interest rate models): 25%
- * Projet (Volatility models): 25%
- * projet (Data science projects): 25%

Bibliographie

Stochastic calculus

- * Evans, L. (2010). An Introduction to Stochastic Differential Equation. American Mathematical Society.
- * Le Gall, J.-F. (2006). Intégration, Probabilités et Processus Aléatoires. Ecole Normale Supérieure de Paris

Interest rate models

- * Brigo, D., & Mercurio, F. (2007). Interest rate models-theory and practice: with smile, inflation and credit. Springer Science & Business Media
- Privault, N. (2012). An elementary introduction to stochastic interest rate modeling. World Scientific.

Volatility models

* El Karoui, N. (2004) Couverture des risques dans les marchés financiers. Ecole Polytechnique

Data science projects

- * Zeng, A and Casari, A. Feature Engineering for Machine Learning. O'Reilly Media.
- * Müller, A. and Guido, S. Introduction to Machine Learning with Python. O'Reilly Media.

Equipe pédagogique

- * Stochastic calculus: Sébastien Darses (Aix-Marseille Université)
- Interest rate models: Abderrahim Ben Jazia (RSM Paris)

- * Volatility models: Ismail Akil (Morgan Stanley)
- * Data science projects: Alexandre Chirié (Mantiks) et Maxilimien Défourné (Mantiks)

Objectif de Développement Durable

Partenariats pour la réalisation des objectifs

Total des heures		100h
Cours	Cours Magistral	81h
Projet	Projets	19h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

renaud.bourles@centrale-marseille.fr

Spécialité : Finance d'entreprise

Fn bref

> Langue de cours: Anglais

Présentation

Prérequis

UE Finance de l'option DDEFi et ses propres pré-requis

Objectifs d'apprentissage

- * Savoir construire un modèle financier et remettre en cause ses hypothèses
- * Savoir produire et interpréter de l'information financière
- * Comprendre comme un banque gère son risque en utilisant des financement structurés
- * Connaître les spécificité du financement et de l'accompagnement de start-up
- * Connaître les principaux modèles des sciences de données et leur utilité.

Description du programme

This unit is composed of three courses: Structured finance, Project finance, and Workshop in corporate finance, of 24 hours each, and is complemented by the third part of the data science projects (9 hours course and 12 hours project) devoted to models and their validation

Structured finance

- 1. Main market players and rationale for using structured finance
- 2. Promoters Credits
 - i. Understanding the Promoter's logic
 - ii. Understanding Credit Risk

- iii. Assessing the risks for the banker
- 3. Investor Credit
 - i. Conceptualization
 - ii. Leverage and Loan to Value (LTV)
 - iii. Debt Service Cover Ratio (DSCR) and Interest Cover Ratio (ICR)
 - iv. Slicing of Debt
- 4. Due diligence and points of vigilance of the banker
 - i. Leases and Rental Conditions
 - ii. Valuation Report
- 5. Other operations
- 6. Perspectives on Market Finance (Securitization)

Project finance

- 1. The main steps of project finance
 - i. Tender
 - ii. Structuring
 - iii. Optimization
- 2. Financial modelling
 - i. The issue of circularity
 - ii. Internal rate of return and gearing ratio
 - iii. Case study
- 3. The case of renewable energy projects
 - i. Prices and costs of renewables
 - ii. Bank vs funds
 - iii. How to set the price of a project?

Workshop in corporate finance

- 1. Financial modelling using Excel
- 2. The specificities of Transaction Services Advisory
- 3. Advising start-ups (on their business model and in making them viable)
- 4. Projects with real start-ups

Data science projects: models and their validation

- 1. Projects and models
 - i. The Bias-Variance tradeoff
 - ii. Feature Selection
 - iii. Feature Engineering
 - iv. Defining a metric
- 2. Models and applications

- i. Regressions (linear, polynomial, penalized et logistic)
- ii. Decision trees (random forest and gradient boosting)
- 3. Focus on Natural Language Processing (NLP)

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Connaître les avantages et inconvénients des financement structurés
- * Comprendre comment ces opération peuvent permettre de financement de grands projets industrielle, notamment dans les énergies renouvelables
- * Connaitre les avantages et inconvénients des Partenariats Public-Privé
- * Savoir utiliser le business plan d'une start-up et des échanges avec ses créateurs pour pouvoir l'accompagner dans une levée de fonds
- * Savoir utiliser les modèles issus des sciences de données dans un contexte professionnel.

Modalité de contrôle des connaissances

- * Projet et présentation (Structured finance): 25%
- * Projet (Project finance): 25%
- * Projet et présentation (Workshop in corporate finance): 25%
- * Projet et présentation (Data science projects): 25%

Bibliographie

Corporate finance

* Vernimmen, P. (2021). Finance d'entreprise. Dalloz

Data science projects

- * Zeng, A and Casari, A. Feature Engineering for Machine Learning. O'Reilly Media.
- * Müller, A. and Guido, S. Introduction to Machine Learning with Python. O'Reilly Media.

Equipe pédagogique

- * Structured finance: Amaury Schoenauer (Caisse d'épargne CEPAC)
- * Project finance: Mehdi El Alaoui (International Finance Corporation),

Benoît Forgues (Amiral Gestion), Olivier Vandooren (Sigée Finance)

* Workshop in corporate finance: Julien Belon (Arx Corporate Finance),

Hugues Chabalier (2CFinance), Mathieu Rebbi (Eight advisory)

* Data science projects: Alexandre Chirié (Mantiks), Maxilimilen Défourné (Mantiks)

Objectif de Développement Durable

Recours aux énergies renouvelables

Partenariats pour la réalisation des objectifs

Bâtir une infrastructure résiliente

Total des heures		100h
Cours	Cours Magistral	70h
Projet	Projets	30h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

renaud.bourles@centrale-marseille.fr

Projet DDEFI

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

- * Connaissances en programmation (Python)
- * Connaissances en statistique (régressions, tests)
- * Connaissances en économie (offre et demande)
- * Connaissances en comptabilité (bilan, compte de résultat)
- * Connaissance en finance (produits financiers et principes d'évaluation)

Objectifs d'apprentissage

- * Acquérir une méthodologie d'approche d'un problème.
- * Exploiter les outils d'aide présentés lors des modules d'enseignement.
- * Savoir choisir entre différents modèles et solutions.

Description du programme

Par groupes de trois à cinq, les élèves travaillent sur un projet proposé par une entreprise. Ce projet sera l'occasion d'approfondir les connaissances et compétences dans un domaine particulier sur un problème pratique. Les sujets de projets peuvent être proposés par des entreprises financières (banque, compagnie d'assurance, ...), des entreprises du monde des données, des cabinets de conseil ou des entreprises en pépinière.

Chaque groupe est encadré d'une part d'un tuteur entreprise, qui définit notamment le cahier des charges et veille à l'adéquation du travail avec ses besoins, et d'autre part d'un tuteur école suivant régulièrement le projet et pouvant servir d'interface entre l'entreprise et les élèves.

Le projet fait ensuite l'objet d'une évaluation fin mars sur la base des livrables et d'une soutenance orale.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- * Savoir comment utiliser des données pour prendre des décisions.
- * Savoir comment présenter un modèle (ou une solution), ses résultats et sa cohérence.
- * Être capable de comprendre l'activité et les problématiques d'une entreprises.

Modalité de contrôle des connaissances

Rapport (livrables du projet) et soutenance: 100%

Bibliographie

n/a

Equipe pédagogique

Tuteurs école possibles : Renaud Bourlès, Nicolas Clootens, Hajare El Hadri, Mitra Fouladirad, Florian Magnani, Françoise Perrin, Christophe Pouet

Objectif de Développement Durable

Partenariats pour la réalisation des objectifs

Total des heures 100h

Projet Projets 100h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Renaud Bourles

□ renaud.bourles@centrale-marseille.fr

Mathématiques et Modélisation pour le Climat, la Terre et l'Humain (CLIMATHS)

	Nature	СМ	TD	TP	Credits
Temps 3	Module				8
L'anthropocène et ses futurs	Module	28h			
Valeurs extrêmes et climat	Module	16h			
Apprentissage statistique	Module	12h	8h	4h	
Reconstruction de données	Module	12h	12h	8h	4
	Nature	СМ	TD	TP	Crédits
Projet CLIMATHS	Module				5

Temps 3

	Nature CM TD	TP Crédits
L'anthropocène et ses futurs	Module 28h	
	Nature CM TD	TP Crédits
Valeurs extrêmes et climat	Module 16h	
	Nature CM TD	TP Crédits
Apprentissage statistique	Module 12h 8h	4h
	Nature CM TD	TP Crédits
Reconstruction de données	Module 12h 12h	8h 4

L'anthropocène et ses futurs

Présentation

Total des heures		28h
Nouvelles heures d'enseignement	Cours Magistral	28h

Valeurs extrêmes et climat

Présentation

Total des heures		16h
Nouvelles heures d'enseignement	Cours Magistral	16h

Apprentissage statistique

Présentation

Total des heures		24h
Nouvelles heures d'enseignement	Cours Magistral	12h
Nouvelles heures d'enseignement	Travaux Dirigés	8h
Nouvelles heures d'enseignement	Travaux Pratiques	4h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thibaut Le Gouic

■ thibaut.le-gouic@centrale-marseille.fr

Reconstruction de données

Présentation

Total des heures		32h
Nouvelles heures d'enseignement	Cours Magistral	12h
Nouvelles heures d'enseignement	Travaux Dirigés	12h
Nouvelles heures d'enseignement	Travaux Pratiques	8h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Jean Baccou

jbaccou@intervenants.centrale-marseille.fr

Projet CLIMATHS

Présentation

Total des heures 100h

Nouvelles heures d'enseignement

Projets 100h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Magali Tournus

magali.tournus@centrale-marseille.fr

De la ressource au produit. Chimie et procédés durables (GREEN)

	Nature	СМ	TD	TP	Crédits
Temps 3 : 2 électifs au choix	Module				
Production éco-responsable	Module	52h	18h	20h	8
Bioprocédés et biomolécules	Module	50h	18h	20h	8
	Nature	СМ	TD	TP	Crédits
Projet GREEN	Module				5

Temps 3 : 2 électifs au choix

	Nature	СМ	TD	TP	Crédits
Production éco-responsable	Module	52h	18h	20h	8
	Nature	СМ	TD	TP	Crédits
Bioprocédés et biomolécules	Module	50h	18h	20h	8

Production éco-responsable

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Chimie générale.

Objectifs d'apprentissage

Afin de réduire la demande de ressources en déclin et de réduire les déchets, de nouvelles voies de fabrication sont à concevoir. Ce module présente le développement de nouveaux outils afin de rendre la chimie respectueuse de l'environnement et plus sûre.

Connaissance des enjeux industriels et de recherche clés du 21ème siècle: valorisation de la biomasse et des ressources fossiles.

Connai#tre les méthodes actuelles et industrialisées qui permettent de produire des molécules en respectant les réglementations environnementales.

Etudier le monde du vivant pour s'en inspirer afin de reproduire certains mécanisme.

Inspiration par le monde du vivant: connaître le fonctionnement monde du vivant pour trouver des alternatives à la chime par le biais des biotechnologies (génie génétique, ou métabolimique).

L'unité d'enseignement a vocation à permettre aux étudiants d'être concrètement confrontés, au travers de conférences réalisées par des professionnels et au travers de visites d'entreprises, aux différentes réalités industrielles qui pourront êtres les leurs à la sortie de leur formation à l'Ecole Centrale.

Description du programme

Tronc commun:Conférences industrielles, visite d'usine (INEOS, CEA, SANOFI, STEP, La Mede)

Potentiel des ressources agricoles

Biocatalyse

Catalyse supramoléculaire

Catalyse hétérogène

Chimie supportée et recyclabilité

Economie d'atome

Génie génétique

Génie métabolique

Intensification des procédés - Microréacteur

Molécules à haute valeur ajoutée

Compétences et connaissances scientifiques et techniques visées dans la discipline

Disposer de l'ensemble de connaissances indispensables à un ingénieur généraliste centralien souhaitant débuter une carrière industrielle ou académique dans le domaine de la Chimie.

Capacité à élargir à d'autres usages un outil ou un concept.

Capacité à collecter et analyser de l'information avec logique et méthode

Capacité à comprendre et formuler le problème (hypothèses, ordres de grandeur, etc...)

Capacité à reconnaître les éléments spécifiques d'un problème.

Capacité à proposer un ou plusieurs scénarios de résolution

Capacité à étudier et comprendre des systèmes complexes.

Capacité à comprendre le lien entre chimie fondamentale et l'appliquée.

Comprendre et étudier les systèmes supramoléculaires et plus généralement des systèmes complexes.

Comprendre le caractère physico-chimique des milieux alternatifs utilisés, leur apport en synthèse organique.

Modalité de contrôle des connaissances

Contrôle continu

Equipe pédagogique

Damien HERAULT

Pascal DENIS

Didier NUEL

Pierrette GUICHARDON

Alexandre MARTINEZ

Bastien CHATELET

Stéphane CANAAN (EXT)

Intervenants extérieurs industriels

Objectif de Développement Durable

Consommation et production responsables

Lutte contre le changement climatique

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	52h
Nouvelles heures d'enseignement	Travaux Dirigés	18h
Nouvelles heures d'enseignement	Travaux Pratiques	20h
Nouvelles heures d'enseignement	Projets	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Damien Herault

■ damien.herault@centrale-marseille.fr

Bioprocédés et biomolécules

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Bilans matière et énergie

Objectifs d'apprentissage

L'UE s'appuie sur les fondamentaux du génie des procédés (bilans, réacteur, cinétique) et ceux de microbiologie (métabolisme, cinétique de croissance) pour présenter les bioprocédés et la production de biomélécules Elle permet ainsi d'aborder le dimensionnement de plusieurs opérations unitaires typiques des procédés adaptées à la production de microorganismes ou de molécules synthétisées par ces microorganismes tout en définissant les conditions de fonctionnement utilisables dans la pratique industrielle.

L'unité d'enseignement a vocation à permettre aux étudiants d'être concrètement confrontés, au travers de conférences réalisées par des professionnels et au travers de visites d'entreprises, aux différentes réalités industrielles qui pourront êtres les leurs à la sortie de leur formation à l'Ecole Centrale.

Description du programme

Tronc commun: Conférences industrielles, Visites d'usine (INEOS, CEA, SANOFI, STEP)

Introduction biologie fondamentale (biologie cellulaire, métabolisme, biosynthèse)

Biotechnologie: Filières et enjeux du vivant dans l'industrie

Bioréacteurs et opérations unitaires associées: fondamentaux, paramètres de dimensionnement, agitation, rhéologie

Etudes de cas et travaux pratiques

Visites de laboratoires et entreprises biotech

Compétences et connaissances scientifiques et techniques visées dans la discipline

Reconnaître les éléments spécifiques d'un problème et élargir à d'autres usages un outil ou un concept

Résoudre des problèmes complexes et transdisciplinaires , cad savoir comprendre un problème, le formuler, le modéliser en utilisant des concepts et aboutir à une solution acceptable ;

Savoir collecter et analyser des informations dans un domaine peu maitrisé

Modalité de contrôle des connaissances

Contrôle continu (rapport, soutenance, examen)

Equipe pédagogique

Audrey SORIC,

Pascal DENIS

Pierrette GUICHARDON

Nelson IBASETA

Marc JAEGER

Intervenants industriels

Objectif de Développement Durable

Consommation et production responsables

Lutte contre le changement climatique

Total des heures		98h
Nouvelles heures d'enseignement	Cours Magistral	50h
Nouvelles heures d'enseignement	Travaux Dirigés	18h
Nouvelles heures d'enseignement	Travaux Pratiques	20h
Nouvelles heures d'enseignement	Projets	10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Audrey Soric

■ audrey.soric@centrale-marseille.fr

Projet GREEN

Présentation

Total des heures 100h

Nouvelles heures d'enseignement

Projets 100h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Pierrette Guichardon

■ pierrette.guichardon@centrale-marseille.fr

Info (INFO)

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Parcours DO-IT : Développement et Organisation en IT	Module				
Temps 3 : Maintenir et développer	Module	40h	35h		
Développement : amélioration continue	Module	50h			4
Organisation : lean engineering	Module	50h			4
Formation tutorée	Module				2
Projet	Module				2
Internet of Things	Module	52h		48h	8
	Nature	СМ	TD	TP	Crédits
Parcours IAM : Intelligence Artificielle et Apprentissage Machine	Module				
Temps 3 : L'IA et le ML dans l'entreprise	Module				
Data Engineering	Module	16h			
Large Scale processing	Module	16h			
MLOPS et use-cases industriels	Module	16h	4h		
Computer vision	Module	24h			
Hackathon	Module				
Internet of Things	Module	52h		48h	8
	Nature	СМ	TD	TP	Crédits
Projet INFO	Module	64h		36h	

Parcours DO-IT : Développement et Organisation en IT

Liste des enseignements

	Nature	СМ	טו	IP	Credits
Temps 3 : Maintenir et développer	Module	40h	35h		
Développement : amélioration continue	Module	50h			4
Organisation : lean engineering	Module	50h			4
Formation tutorée	Module				2
Projet	Module				2
Internet of Things	Module	52h		48h	8

Temps 3: Maintenir et développer

Fn bref

> Langue de cours: Français

Présentation

Prérequis

Temps 1 et 2 option DO-IT

Objectifs d'apprentissage

Les CT, POK et MONs de ce temps vivent à l'acquisition des compétences ci-après. Selon leurs choix, les élèves en acquérons un sous-ensemble particulier.

Axe SI/M

- * Anticiper les impacts d'un SI sur l'organisation et les individus
- * Connaître et mobiliser les outils de conduite du changement pour mener un projet SI
- * Mettre en oeuvre une démarche d'analyse critique des SI et de leurs impacts sociétaux et environnementaux

Axe D/I

- * coder pour durer
- * le code dans son environnement (client/entreprise)

Axe M/GP

- * Concevoir des supports au management visuel et définir les mécanismes d'utilisation
- * Mobiliser les techniques qualitatives d'analyse des comportements et cerner les risques de l'utilisation de ces techniques

Description du programme

CT

Cinq CT au choix.

- * Conduite du changement et KM (SI/M)
- * Numérique & Travail (SI/M)
- * programmation par les tests (D/I)
- * aws/docker (D/I)
- algorithmie avancée (D/I)
- * no/low code (M/GP)
- * Management Visuel (M/GP)
- * Analyses comportementales (M/GP)

POK

Par groupe de 1 ou 2 élèves (max). Plusieurs groupes peuvent choisir le même POK.

- * Enquête sur le management algorithmique : enjeux économiques, sociaux et juridiques (SI/M)
- * Responsabilité numérique des entreprises (SI/M)
- * programmation par les tests d'un projet informatique (D/I)
- * serverless et docker (D/I)
- * Amélioration continue d'un service existant et gestion des itérations : reprendre une offre de valeur existante, la confronter à des usagers et affiner la proposition de valeur (D/I & M/GP)

MON

Travail individuel. Plusieurs élèves peuvent choisir le même MON, mais chacun rendra un travail séparé. Il faut choisir 2 MONs, le premier sera fait pendant la première moitié du temps, le second pendant l'autre moitié. Une liste possible est donnée, mais les élèves peuvent choisir ce qu'il veulent.

Modalité de contrôle des connaissances

Contrôle continu

Equipe pédagogique

- * François Brucker
- * Florian Magnani
- * Lætitia Piet

Objectif de Développement Durable

Accès à des emplois décents

Partenariats pour la réalisation des objectifs

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	40h
Nouvelles heures d'enseignement	Travaux Dirigés	10h
Nouvelles heures d'enseignement	Travaux Dirigés	25h
Nouvelles heures d'enseignement	Autres	25h

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Développement : amélioration continue	Module	50h			4
	Nature	СМ	TD	TP	Crédits
Organisation : lean engineering	Module	50h			4
	Nature	СМ	TD	TP	Crédits
Formation tutorée	Module				2
	Nature	СМ	TD	TP	Crédits
Projet	Module				2

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Responsable pédagogique

Florian Magnani

■ florian.magnani@centrale-marseille.fr

Responsable pédagogique

Laetitia Piet

■ laetitia.piet@centrale-marseille.fr

Développement : amélioration continue

Présentation

Total des heures 50h

50h

Nouvelles heures d'enseignement Cours Magistral

Infos pratiques

Nom responsable UE

Responsable pédagogique

François Brucker

■ francois.brucker@centrale-marseille.fr

Organisation: lean engineering

Présentation

Total des heures		50h
Nouvelles heures d'enseignement	Cours Magistral	50h

Projet

Présentation

Total des heures		25h
Nouvelles heures d'enseignement	Projets	25h

Internet of Things

Fn bref

> Langue de cours: Français

Présentation

Prérequis

L'enseignement est proposé sans prérequis compte tenu des connaissances acquises en 1A & 2A, il est plus particulièrement recommandé en temps 3, à des élèves ayant suivis les temps 1&2 à coloration Machine Learning ou Développement Web pour leur offrir une valeur ajoutée en leur ouvrant des possibilités d'optimiser des écosystèmes grâce à l'utilisation combinée de Machine Learning, de l'IoT et des Services Web. En effet, la combinaison des objets connectés et de mécanismes d'intelligence artificielle permettra dans les prochaines années l'émergence de solutions véritablement très avancées d'aide à la décision ou de suggestion d'action comme c'est déjà le cas avec la maintenance prédictive dans les unités de production.

Objectifs d'apprentissage

L'Internet of Things (IoT) désigne le réseau en pleine expansion des dispositifs qui connectés à internet permettent la collecte, le traitement et les échanges de données visant à une utilisation optimisée de notre environnement matériel.

Cette « toile » transforme l'approche conventionnelle de l'automatisation qui lie la prise en compte des paramètres de notre environnement aux actions que l'on peut exercer sur celui-ci avec des objectifs sur la résilience, les performances et la fiabilité.

Elle concerne de façon non exhaustive :

- * Notre environnement : l'environnement domestique (automatisation du bâtiment), le contrôle de la qualité de l'air ...
- * Les transports au sens large : transport et distribution de l'énergie, signalisation, gestion de parkings, conduite autonome...
- * L'augmentation de la productivité et de l'automatisation des processus, robotisation dans les domaines de la fabrication industrielle, de l'agriculture connectée et de l'assistance à la personne.

L'objectif visé par cette option est de mettre en lumière « l'écosystème » permettant le développement des solutions IoT en mettant en avant ce qui peut être un frein à son déploiement : la sécurité.

L'approche choisie est une approche s'appuyant sur des projets permettant de balayer au mieux les champs de compétences à acquérir pour développer et mettre en œuvre des solutions IoT.

Description du programme

Cette option est composée de plusieurs modules :

Introduction à l'IoT (12h):

Définition, historique, enjeux, écosystème, architecture, protocoles radio et interfaces d'application, cas d'usages, mise en œuvre.

Introduction au Temps Réel (2h):

Processus & communications entre processus, utilisation des sémaphores.

Code Embarqué (8h):

Microarchitecture, Impact de la microarchitecture sur les performances logicielles et sur la sécurité des logiciels, Architecture logicielle embarquée.

Attaques/Canaux auxiliaires & Injection de fautes (8h):

Les attaques par canaux auxiliaires, l'injection de fautes.

Réseaux et protocoles réseaux pour l'IoT (9h):

Transmissions de donnéees, Modèles OSI et TCP/IP, Adressage IPv4, Protocoles ARP, IP, ICMP, TCP, UDP, DHCP, DNS, HTTP, SSL/TLS, POP/IMAP/SMTP, SNMP, Attaques et défenses des applications web, Architectures et composants réseau.

Sécurité (7h):

Méthodologies utilisées pour modéliser les aspects de sécurité d'un système, le règlement RGPD, utilisation de la cryptographie pour concevoir des protocoles sécurisés, sécurité des protocoles IoT populaires (TLS, BLE, LoRa), compromis sécurité / performances / fonctionnalités: sur deux familles de produits STM32 /STSAFE.

Travaux pratiques/projets (48h):

Illustrations par la mise en œuvre de l'écosystème en étudiant ses différentes composantes.

Use cases (6h):

Illustrations sous la forme de conférences prestataires/clients.

Compétences et connaissances scientifiques et techniques visées dans la discipline

Cet enseignement complète dans la formation la mise en application de l'approche "système" incontournable dans :

Le développement des innovations techniques et scientifiques

La résolution des problèmes complexes et transdisciplinaires.

Il permet de développer l'aptitude de l'élève à proposer des solutions connectées pour un système, et à les exploiter pour superviser ou contrôler ce système

Items du référentiel Centralien :

Innovation Scientifique & Technique

Maîtrise de la complexité & des systèmes

Direction de programme

Management des hommes

Vision Stratégique

Modalité de contrôle des connaissances

Contrôle Continu: La note en sera une moyenne pondérée (petites interrogations, TP, mini projets...)

Bibliographie

🗹 The Technical Foundations of IoT, Raspberry Pi IoT Projects, 🗹 IoT: Technical Challenges and Solutions

Equipe pédagogique

M. Agoyan (ST), S. Courcambeck (ST), A Kilidjian (ECM), P. Préa (ECM), Maxence Mohr (Cyberwings)

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	52h
Nouvelles heures d'enseignement	Travaux Pratiques	48h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alain Kilidjian

■ alain.kilidjian@centrale-marseille.fr

Parcours IAM : Intelligence Artificielle et Apprentissage Machine

Liste des enseignements

	Nature	CIVI	טו	IP	Credits
Temps 3 : L'IA et le ML dans l'entreprise	Module				
Data Engineering	Module	16h			
Large Scale processing	Module	16h			
MLOPS et use-cases industriels	Module	16h	4h		
Computer vision	Module	24h			
Hackathon	Module				
Internet of Things	Module	52h		48h	8

Temps 3: L'IA et le ML dans l'entreprise

Liste des enseignements

	Nature	СМ	TD	TP	Crédits
Data Engineering	Module	16h			
	Nature	СМ	TD	TP	Crédits
Large Scale processing	Module	16h			
	Nature	СМ	TD	TP	Crédits
MLOPS et use-cases industriels	Module	16h	4h		
	Nature	СМ	TD	TP	Crédits
Computer vision	Module	24h			
	Nature	СМ	TD	TP	Crédits
Hackathon	Module				

Infos pratiques

Nom responsable UE

Responsable pédagogique

Ronan Sicre

▼ ronan.sicre@centrale-marseille.fr

Data Engineering

Présentation

Total des heures		16h
Nouvelles heures d'enseignement	Cours Magistral	16h

Infos pratiques

Large Scale processing

Présentation

Total des heures 16h

Nouvelles heures d'enseignement Cours Magistral 16h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Ali Karaouzene

■ akaraouzene@intervenants.centrale-marseille.fr

MLOPS et use-cases industriels

Présentation

Total des heures		20h
Nouvelles heures d'enseignement	Cours Magistral	16h
Nouvelles heures d'enseignement	Travaux Dirigés	4h

Infos pratiques

Computer vision

Présentation

Total des heures 24h

Nouvelles heures d'enseignement Cours Magistral 24h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Ronan Sicre

▼ ronan.sicre@centrale-marseille.fr

Hackathon

Présentation

Total des heures 24h

Nouvelles heures d'enseignement Projets 24h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thierry Artieres

■ thierry.artieres@centrale-marseille.fr

Projet INFO

Présentation

Total des heures		100h
Nouvelles heures d'enseignement	Cours Magistral	64h
Nouvelles heures d'enseignement	Travaux Pratiques	36h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Alain Kilidjian

■ alain.kilidjian@centrale-marseille.fr